Regulations, Curriculum and Syllabus for

UG Programs in Engineering (R20UG)

(Effective from 2020-21 for Regular students and from 2021-22 for Lateral Entry students)

CIVIL ENGINEERING

Kandula Srinivasa Reddy Memorial College of Engineering (Autonomous) Kadapa 516005, AP (Approved by AICTE, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC) (An ISO 9001-2008 Certified Institution)

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS) VISION & MISSION

VISION:

To evolve as center of repute for providing quality academic programs amalgamated with creative learning and research excellence to produce graduates with leadership qualities, ethical and human values to serve the nation.

MISSION:

M1: To provide high quality education with enriched curriculum blended with impactful teaching-learning practices.

M2: To promote research, entrepreneurship and innovation through industry collaborations.

M3: To produce highly competent professional leaders for contributing to Socio-economic development of region and the nation.

DEPARTMENT OF CIVIL ENGINEERING

VISION & MISSION

VISION:

To become the frontrunner in the field of civil engineering and tackle national and global challenges that aligns with the needs of the society

MISSION:

M1: To provide value added education and cope up with the changes through innovative and dynamic curriculumM2: To engage in research that creates state-of-the-art technologies and futuristic knowledge, with a strong emphasis on meeting the socio-economic requirements of the

society

M3: To produce globally competent professionals with leadership skills, team work and ethical conduct

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

PEO1 – To excel in professional career in the industry or to be a successful entrepreneur to create a sustainable built environment.

PEO2 – To pursue higher education and involve in research with zeal for lifelong learning.

PEO3 – To demonstrate leadership qualities, ethical values and environmental awareness to serve the society

PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes:

PO1 - Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 - **Problem Analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 - **Design/Development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 - Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 - Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 - The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.

PO7 - Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 - Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.

PO9 - Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 - Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 - Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 - Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

The graduates in Civil Engineering will be able to

PSO 1: Analyze, Design, Construct, Maintain and Operate infrastructural projects.

PSO 2: Assess the environmental impact of various projects and take required measures to curb environmental deterioration.

PSO 3: Use latest software pertaining to various streams of Civil Engineering.

KSRM College of Engineering (Autonomous), Kadapa-516005, AP

Regulations for UG Programs in Engineering (R20UG)(Effective from 2020-21)

Index

1.0	Nomenclature	I
2.0	Short Title and Application	II
3.0	Suspension and Amendment of Rules	II
4.0	Requirements for Admission	II
5.0	Structure of the B. Tech courseII-I	II
6.0	Registration and Enrolment III-I	V
7.0	Assessment Procedure – Internal Tests and End Examinations IV-V	Π
8.0	Method of Assigning Letter Grades and Grade Points VII-I	X
9.0	Requirements for Completing Subjects I	X
10.(ORequirements for taking End Examinations and PromotionIX-	X
11.(DRevaluation of End Examination Scripts	KI
12.(OSupplementary End Examinations	XI
13.(DRequirements for Award of B. Tech degree XI-XI	II
14.(ORegulations for Lateral Entry students underXI	V
15.0	OTransitory RegulationsXI	V

KSRM College of Engineering (Autonomous), Kadapa-516005, A.P.

Regulations for UG Programs in Engineering

(R20 UG) (Effective From 2020-21)

1.0 Nomenclature

- **1.1** *Academic Year*: Period of academic instruction of, approximately, one year duration that usually starts in June/July and ends in April/May next
- 1.2 Semester: Either of two divisions of an academic year
- **1.3** *Major*: A specific field of study. Example: Civil Engineering
- **1.4** *Minor*: An area outside of, or complementary to, a Major. Example: For CivilEngineering major, Computer Science is a minor and vice versa
- 1.5 *Subject*: An area of knowledge that is studied as part of a Course
- 1.6 Core: A subject that is mandatory for a Major course of study
- 1.7 *Elective*: A subject that is selected for study to suit one's individual needs
- **1.8** *Mandatory Subject*: A subject that is studied to meet certain requirements but has nocredits assigned to it
- **1.9** *Humanities subjects*: Subjects that describe and interpret human achievements, problems and historical changes at individual and societal levels covering the disciplines of literature, history, and philosophy.
- **1.10** *Social Sciences*: Subjects that describe the mental and behavioural activities of individuals, groups, organizations, institutions, and nations covering the disciplines of anthropology, economics, linguistics, political science, and psychology
- 1.11 Exam: A test to measure one's progress, knowledge, or ability in a subject
- **1.12** *Credit*: A numerical weight given to a subject, usually based on quantum of academic work
- **1.13** *Grade*: A numerical or alphabetic designation measuring the level of achievement in an exam.
- **1.14** *Attendance*: Physical presence of oneself in a classroom/laboratory for purpose of ascheduled academic instruction
- 1.15 Course: A series of subjects that constitute a Major field of study
- **1.16** *Branch*: Same as Course
- **1.17** *Program*: Same as Course
- 1.18 Degree: An academic title conferred to honour distinguished achievement
- **1.19** *Minor Degree*: An Academic honour conferred on achieving 20 extra credits in one'sminor area of study
- **1.20** *Honours*: An Academic honour conferred on achieving 20 extra credits in one's major area of study.

2.0 Short Title and Application

- **2.1** These rules and regulations may be called as R20UG and come into force from Academic Year 2020-21 and exists until superseded by new regulations. These rules are applicable for students who join the institute from academic year 2020-21 onwards. Students who have joined in earlier regulations will continue in their respective regulations.
- **2.2** These rules and regulations are applicable to all under graduate courses in engineering and technology leading to Bachelor's Degree in Technology (B. Tech)
- 2.3 The Major courses offered, at present, are:
 - 2.3.1 Civil Engineering
 - 2.3.2 Electrical and Electronics Engineering
 - 2.3.3 Mechanical Engineering
 - 2.3.4 Electronics and Communication Engineering
 - 2.3.5 Computer Science and Engineering
- **2.4** The Institute may offer new Majors in future to which these rules and regulations will be applicable.

3.0 Suspension and Amendment of Rules

- **3.1** Academic Council has the authority to suspend a rule temporarily.
- **3.2** Academic Council has the authority to amend a rule.
- **3.3** For affirmative action on any suspension or amendment of a rule, an affirmative vote of three-fifths of the members present and voting shall be required in Academic Council.

4.0 Requirements for Admission

- **4.1** At present, admissions into first-year class of various Majors are governed by Government and the Affiliating University. The eligibility criteria and procedure for admissions are prescribed by Government and Affiliating University.
- **4.2** A student is not allowed change of Major after admission into first-year.
- **4.3** A student must fulfil medical standards required for admission.
- **4.4** The selected students are admitted into first-year class after payment of the prescribed fees.

5.0 Structure of the B. Tech course

- **5.1** *Duration*: The duration of B. Tech degree course is eight semesters spread over four academic years. Semesters are named sequentially from First Semester to Eighth Semester.
- 5.2 Working Days: Calendar for any semester shall be announced at least four weeks

before its commencement. Minimum number of working days shall be 90 for any semester.

- 5.3 Curriculum: Each major shall have core, elective and mandatory subjects drawn from six categories of subject areas i) Basic Sciences (BSC), ii) Humanities and Social Sciences including Management Courses (HSMC), iii) Engineering Science Courses (ESC), iv) Professional Core Course (PCC), v) Professional Elective Course (PEC), and vi) Open Elective Course (OEC). The curriculum for each branch shall be approved by its corresponding Board of Studies and Academic Council.
- **5.4** *Credits*: All subjects that are assessed for marks have credits assigned to them. The credits assigned to subjects shall be given in curriculum. The total number of credits for entire course is 160 for all branches.
- **5.5** *Curriculum and Syllabus*: The curriculum and syllabus for first and second semestersis given in Annexure-1 and Annexure-2 respectively.
- **5.6** *Medium of Instruction*: The medium of instruction, examinations and all other related activities is English.
- **5.7** *Responsibility and Advising*: It is the responsibility of the student to understand and know the regulations and requirements to earn the degree. Each student admitted into the degree programs is assigned to a Faculty Advisor who assists the student in designing an effective program of study. Students should consult their Faculty Advisors for selection of electives and for general advice on academic program.
- **5.8** *Gap-Year*: Outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after II Year / III Year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. College Academic Council shall evaluate the proposal submitted by the student and decide on permitting the student for availing the gap-year. Gap- year can be availed once in the entire course.

6.0 Registration and Enrolment

- **6.1** Prior to start of each semester, every student shall register for all the subjects listed in curriculum and additional subjects required for achieving honours/ minor degree. Excepting first semester, the registration for a semester shall be done during a specified week after end examinations of previous semester. In first semester, the registration shall be done within six working days from date of joining. Recommendation of Faculty Advisor is needed for registration.
- **6.2** A student can register utmost 8 theory subjects, including mandatory subjects, in any semester.
- 6.3 Late registration will be permitted with a fine, decided from time to time, up to six

working days from the last date specified for registration.

- **6.4** A student will be eligible for registration for a semester if she or he i) is promoted to that semester, ii) has cleared all fees to the Institute, library and hostel of previous semester, and iii) is not disqualified for registration by a disciplinary action.
- **6.5** A student will be enrolled and allowed to attend the classes on successful registration and payment of necessary fees to Institution, library, and hostel.
- **6.6** Registration and enrolment will be controlled by the Office of the Controller of Examinations.

7.0 Assessment Procedure – Internal Tests and End Examinations

- **7.1** Performance of students in all subjects is assessed continuously through assignments, internal assessment tests and an End examination.
- **7.2** Allocation of internal assessment and End examination marks
 - 7.2.1 For theory subjects, the allocation is 40 marks for internal assessment and60 marks for End examination totalling 100 marks.
 - 7.2.2 For laboratory/drawing/project work subjects, the allocation is 40 marks for internal assessment and 60 marks for End examination totalling 100 marks.
 - 7.2.3 For seminar/industrial training/internship subjects, the allocation is 100 marks for internal assessment. There is no end examination for these subjects.
 - 7.2.4 For mandatory subjects the allocation is 40 marks for internal assessment and no allocation for End examination. These marks are specified for purpose of clause 9.3, and do not account for any credits.
- 7.3 Internal Assessment
 - 7.3.1 Internal assessment means performance evaluation of students by faculty members who teach the subjects.
 - 7.3.2 Guidelines:
 - a) *Allocation*: For theory subjects including mandatory subjects the total internal assessment marks is 40 of which 30 marks are assessed through midterm tests, 5 marks by surprise or sudden quiz and 5 marks by assignments. The faculty members of the concerned subject will assess themarks in the midterm tests and assignments.
- b) *Midterm tests*: Each midterm test will be of 90 minutes duration and evaluated for 30 marks. Internal assessment marks for midterm tests will be calculated as weighted sum of the two midterm test marks, with 80% weight for the best and 20% weight for the other marks. Internal assessment marks for assignments is calculated as the

average of all assignments. Total internal marks are the sum of midterm tests, surprise orsudden quiz and assignments assessment marks.

- If any student abstains for any midterm test, she or he will be awarded zero marks for that midterm test. If any student fails to submit any assignment within the specified deadline, she or he will be awarded zero marks for that assignment.
- i. *Number and duration*: There shall be two midterm tests each with a duration of 90 minutes.
- ii. *Format of test and division of marks*: Internal test shall consist of only descriptive part for 30 marks.
- Descriptive or Subjective part: Subjective part shall contain three questions and all questions shall be answered. However, each question can have internal choice (either or type question). Generally, each question shall test one Course Outcome (CO).
- iv. *Syllabus*: Each test shall cover 50% of the syllabus, approximately.
- c) *Assignments*: The assignments shall aid and hone the daily routine of students. Assignments shall be stimulating and thought provoking to the student. While some questions may test student's understanding of the subject, there shall be questions that imply connect to real world applications. A variety of questions can posed in assignments.
- i. *Number:* A minimum of four assignments shall be given in each subject with one assignment from Unit I to IV of syllabus of that subject.
- ii. *Quantum of work*: An assignment shall take about four to six hours of study / work per week. Assignments shall not be overloaded nor under loaded. As a guideline, each assignment may contain five questions, each question taking an hour to answer.
- iii. *Marks*: Each assignment must be evaluated for fifty marks. Final marks are obtained by averaging all the assignment marks and reducing it to five marks.
- iv. *Deadlines*: Students shall be given at least one-week time to complete and submit assignments. Assignments shall be submitted within deadline. Late submissions should be awarded zero marks.
- v. *General*: It is advised to administer assignments using Google Classroom.
- d) *Quiz*: The concerned faculty has to conduct 8 surprise quiz exams in the regular class itself. From each unit two quiz exams shall be conducted and each quiz is for 10 marks. Out of 8 quizzes 6 best quizzes shall be considered and average of 6 quizzes will be reduced to 5 marks. Each quiz can be fill in the blanks or single sentence answer or definitions.

- 7.3.3 For laboratory/practical/drawing subjects, the internal assessment will be based on regular laboratory work over full semester. The assessment will be done by the faculty concerned. The students shall be informed sufficiently early of the procedure to be followed for internal assessment.
- 7.3.4 For subjects like seminar, project-work, industrial training/internship, and comprehensive viva-voce, the internal assessment will be done by a Department Committee consisting of two senior faculty members and faculty guide of concerned student. The assessment procedure will be informed sufficiently early to the students.
 - a) *Mandatory internships*: University Guidelines shall apply.
 - b) *Evaluation of internships*: Shall be evaluated through the departmental committee. A student will be required to submit a summer internship report to the concerned department and appear for an oral presentation before the department committee. The report and the oral presentation shall carry 40% and 60% weightages respectively.
 - c) *Final Semester Internship*: A student should mandatorily undergo internship (University Guidelines shall apply) and should work parallelly on a project. At the end of the semester the candidate shall submit an internship completion certificate and a project report. The project report shall be evaluated with an external examiner.
- 7.3.5 After the course work is over, the student is permitted to improve his/her internal marks of any 3 theory subjects in the entire course. However he/she will have to attend the course work.
 - 7.4 End examinations
 - 7.4.1 End examinations shall be conducted after completion of coursework in each semester. End exams assessment is for 60 marks. The question paper contains 5 questions and all questions shall be answered. Each question have internal choice (either or type question). Each question carries 12 marks.
 - 7.4.2 The question papers for theory subjects shall be set by faculty members outside of the Institute. The external faculty members for question paper setting shall be appointed by the Principal.
 - 7.4.3 Evaluation of answer scripts shall be done by either Internal or External examiners appointed by the Principal. A minimum of 50% of subjects will be evaluated by external examiners.
 - 7.4.4 For laboratory subjects, end examination shall be conducted by a committee consisting of two internal examiners. One examiner shall be appointed by Head of Department of concerned Major, and the other examiner shall be appointed by the

Principal.

- 7.4.5 For project work viva-voce, end examination shall be conducted by a committee consisting of one internal examiner, one external examiner, and the concerned guide of the student. Internal examiner shall be appointed by Head of Department of concerned Major, and the external examiner shall be appointed by the Principal.
- 7.4.6 If a student abstains from End examination of any subject, for any reason, sheor he shall be marked as "ABSENT" in that subject.
- 7.4.7 There is no end examination for mandatory subjects.

8.0 Method of Assigning Letter Grades and Grade Points

- **8.1** For all credit-bearing subjects, performance of a student in a subject is indicated by a letter grade that corresponds to absolute marks earned in that subject. Each letter grade is assigned a numeric Grade Point that is used to compute Grade Point Average on a scale of 0 to 10.
- **8.2** Performance of a student in both internal assessment and End examination will beconsidered for awarding grades for credit bearing subjects. Total marks earned in a subject is the sum of marks obtained in internal assessment and End examination in that subject.
- **8.3** Pass grade S to E is assigned to a subject based on total marks earned in that subject provided that a student earns at least i) 35% of marks in End examination, and ii) 40% of marks in internal assessment and End examination put together; otherwise fail grade F will be assigned to that subject.
- **8.4** Grade I will be assigned to a subject if a disciplinary action is pending and is not resolved before publication of results. Office of Controller of Examinations shall resolve the pending disciplinary action within six working days from the date of publication of results and change the grade to any of S to F.
- **8.5** Grade *Ab* will be assigned to a subject if a student abstains for End examination of that subject.

8.6 The absolute marks and corresponding letter grade and grade points are given in Table 1.

Absolute Marks	Letter Grade	Grade Points assigned	Remark
<u>> 90</u>	S (Outstanding)	10	Pass
80 - 89	A (Excellent)	9	Pass
70 - 79	B (Very Good)	8	Pass
60 - 69	C (Good)	7	Pass
50 - 59	D (Average)	6	Pass
40 - 49	E (Below Average)	5	Pass
< 40	F (Fail)	0	Fail
Absent	Ab (Absent)	0	Fail
-	Ι	0	Result Withheld

Table 1: Letter Grades and Grade Points

8.7 SGPA: Semester Grade Point Average indicates the performance of a student in all credit-bearing subjects of a semester. SGPA is calculated as the weighted average of Grade Points of all subjects of the semester with corresponding credits of subjects as weights. Audit and Self-study subjects are not considered for SGPA calculation

$$SGPA = \sum GP_i \times CR_i$$

 $\sum CR_i$

where $GP_i = Grade$ Point earned in a subjectand CR_i = Credits allocated for that subject

8.8 CGPA: Cumulative Grade Point Average indicates the performance of a student in all semesters up to and including the current semester under consideration. CGPA is calculated as the weighted average of SGPAs with total credits in each semester as the weights.

$$CGPA = \frac{\sum S_i \times TC_i}{\sum TC_i}$$
where $S_i = SGPA$ obtained in a
semester and $TC_i = Total$ Credits for
that semester

8.9 As per AICTE regulations, conversion of CGPA into equivalent percentage is asfollows:

Equivalent Percentage = $(CGPA - 0.50) \square 10$

8.10 In SGPA / CGPA calculations credits earned towards honours / minor degree will not be counted.

8.11 *Grade Card*: All students shall be issued Grade Cards after the publication of results of a semester. Grade Card is a statement of performance of a student in a semester. It contains information about each registered subject: type of subject, allocated credits, and letter grade earned. SGPA and CGPA will also be indicated.

9.0 Requirements for Completing Subjects

- **9.1** A student shall complete all credit-bearing and mandatory subjects successfully tobe eligible for award of degree.
- **9.2** *Credit-bearing subjects*: A student is considered to have completed a creditbearing subject successfully and earned credits if she or he obtains a pass grade from S to Ein that subject. If a student receives fail grade F or *Ab* in any subject, she or he must register for supplementary End examination for that subject as and when opportunity arises and improve grade to pass grade.
- **9.3** *Mandatory subjects*: A student is considered to have successfully completed a mandatory subject if she or he earns at least 40% of internal assessment marks in that subject.
- **9.4** Supplementary exam for mandatory subjects: If a student fails in mandatory subject, she or he shall register for supplementary examination in that subject as and when the opportunity arises and pass that subject. The supplementary exam will be conducted for 30 marks covering the entire syllabus and student is deemed to have passed in the subject if she or he earns 12 marks (40% marks) in the supplementary exam, disregard of her or his performance in assignments and internal tests.

10.0 Requirements for taking End Examinations and Promotion

- **10.1** A student is eligible to take regular End Examinations of current semester if she or he fulfils the attendance requirement.
- **10.2** A student shall be promoted from current semester to succeeding semester on satisfying the attendance and total credits-earned requirements.
- **10.3** Attendance Requirement
 - 10.3.1 Attendance of students shall be recorded for credit-bearing and mandatory subjects as per the work load indicated in curriculum.
 - 10.3.2 Total class-periods conducted shall be reckoned from beginning to end of a semester as published in academic calendar.
 - 10.3.3 Aggregate Percentage of Attendance is calculated using total number of classperiods attended as numerator and total number of class-periods conducted for the concerned semester as the denominator.
 - 10.3.4 A minimum aggregate attendance of 75% is required for promotion to succeeding

semester and be eligible to take End examinations of current semester. In addition, student has to acquire a minimum of 40% attendancein each subject.

- 10.3.5 A student can appeal to the Principal for condoning deficiency in aggregate attendance if she or he gets an aggregate attendance of 65% or more but less than the required 75%, presenting a valid reason for deficiency. Such a student will be granted promotion if the Principal pardons the deficiency. Principal has the right to reject the appeal if he/she is not satisfied with the performance of the student or the reason cited for deficiency of the attendance.
- 10.3.6 A student earning less than 65% aggregate attendance will be denied promotion. A student who is not promoted on basis of attendance shall be removed from the rolls and shall register for the same semester when opportunity arises. The current semester record of the student is cancelled automatically.
- **10.4** Credits-Earned Requirement

to be

10.4.1 This rule is applicable for promotion of a student from fourth semester to fifth semester and from sixth semester to seventh semester.

10.4.2 A student who is denied promotion for want of requisite credits shall take

supplementary examinations, as and when offered, and earn credits

eligible for promotion.

- 10.4.3 Subjects registered for honours/minor degree shall not be considered towards credits-earned requirement.
- 10.4.4 For promotion from fourth semester to fifth semester, a student must earn at least 40% credits (rounded to lower integer) from first semester to third semester subjects. A student will get the following opportunities to pass the subjects:
 - First semester subjects: One regular and three supplementary examsSecond semester subjects: One regular and two supplementary examsThird semester subjects: One regular and one supplementary exam
- 10.4.5 For promotion from sixth semester to seventh semester, a student must earnat least 40% credits (rounded to lower integer) from first semester to fifth semester subjects. A student will get the following opportunities to pass the subjects:

First semester subjects	:	One	regular	and	five	supplementary	
exams Second semester subjects	:	One	regular	and	four	supplementary	
examsThird semester subjects	:	One	regular	and	three	supplementary	
examsFourth semester subjects	:	One	regular	and	two	supplementary	
exams Fifth semester subjects	: One regular and one supplementary exam						

11.0 Revaluation of End Examination Scripts

- **11.1** Revaluation of End Examination scripts is allowed for theory subjects only by paying requisite fee.
- **11.2** Procedure for Revaluation: The script will be revaluated by an examiner appointed by the Principal. The maximum of revaluation and regular end examination markswill be awarded for that subject.
- **11.3** A student can apply for revaluation in a subject only once.

12.0 Supplementary End Examinations

- **12.1** Students are eligible to take Supplementary examinations in subjects with fail gradeeither F or *Ab* only.
- **12.2** Supplementary examinations for even semester subjects will be conducted along with regular examinations of odd semester subjects.
- **12.3** Supplementary examinations for odd semester subjects will be conducted along with regular examinations of even semester subjects.
- **12.4** For eighth semester, special supplementary examinations will be conducted in second week following the results publication date of regular examination of eighthsemester.

13.0 Requirements for Award of B. Tech degree

- **13.1** Time Limit for completion of requirements for award of degree is eight academic years including gap-year from the date of admission. A student who could not complete all the requirements in this time limit shall forego admission and will be removed from the rolls of the Institute.
- 13.2 A student shall be eligible for award of B. Tech degree provided she or he has:
 - 13.2.1 Registered and successfully completed all required credit-bearing and mandatory subjects with a total of 160 credits
 - 13.2.2 Secured a CGPA of 4.5 or more
 - 13.2.3 Cleared all dues to the Institute, library and hostel
 - 13.2.4 No disciplinary action is pending against her or him
 - 13.2.5 Satisfied any other stipulation of the affiliating university

13.3 *Award of Class*: Each student will be given class in degree based on CGPA asfollows:

	0
Class of Degree	Range of CGPA
Pass Class	>= 4.5 but <5.5
Second Class	>= 5.5 but <6.5
First Class	>= 6.5 but <7.5
First Class with Distinction	>= 7.5

Table 2: Class of Degree

13.4 *Degree with Honours designation*: Students with higher learning capabilities are encouraged to opt for Honours designation. Degree with Honours imply a higher level of academic achievement. A student can earn B.Tech degree with honours designation by meeting the following requirements

- 13.4.1 Honours designation is optional. A student can opt for either Honours designation or Minor degree (clause 13.5) but not both.
- 13.4.2 *Entry eligibility*: Students shall apply for Honours designation at the beginning of the fourth semester. Eligibility criteria are (i) minimum CGPA of 8.0 and (ii) no backlogs, reckoned up to second semester. The Chairperson of the concerned Board of Studies will process the applications and publish the list of eligible students.
- 13.4.3 *Additional course work*: Students shall complete an additional 20-credits coursework, in addition to 160 regular credits, in her/his own major during fifth to seventh semesters. The Board of Studies (BoS) of the concerned major shall specify the list of advanced elective subjects for the purpose of honours designation.
- Out of the 20 additional credits to be acquired, 16 credits shall be earned by undergoing specified courses listed as pools, with four courses, each carrying 4 credits. The remaining 4 credits must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12 weeks as recommended by the BoS.
- If minimum enrolments criteria are not met then the students shall be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.

If a student drops or is terminated from the Honours program, the

additional credits earned so far will remain extra. These additional courses will find mention in the transcript but not in the degree certificate.

- 13.4.4 *Registration and enrollment*: Clause 6.0 shall apply
- 13.4.5 *Evaluation*: The evaluation shall be as per clause 7.0
 - 13.4.6 *Continuous performance*: Students shall earn a minimum SGPA of 8.0 in all semesters, from fourth to seventh, and without backlogs to be eligible for award of Honours designation. Regular and additional subjects shall be considered for SGPA calculation. If a student does not get a minimum SGPA of 8.0 or fails in any subject during fourth to seventh semesters, she/he will lose candidature for honours designation.
 - **13.5** *Minor Degree designation*: Students with higher learning capabilities are encouraged to opt for Minor degree designation. Minor degree imply a higher level of academic achievement and improves employability. A student can earn minor degree designation by meeting the following requirements.
 - 13.5.1 Minor degree is optional. A student can opt for either Minor degree or Honours designation (clause 13.4) but not both.
 - 13.5.2 *Entry eligibility*: Students shall apply for minor degree at the beginning of fourth semester. Eligibility criteria are (i) minimum CGPA of 8.0 and (ii) no backlogs, reckoned up to second semester. The Chairperson of the concerned Board of Studies (minor department) will process the applications and publish the list of eligible students.
 - 13.5.3 Additional coursework: Students shall complete an additional 20-credits coursework, in addition to 160 regular credits, in selected minor program during fourth to seventh semesters. The Board of Studies (BoS) of the concerned minor program shall specify the list of core and elective subjects for the purpose of minor degree. Out of the 20 credits, 16 credits shall be earned by undergoing specified courses listed by the concerned BoS and must pursue atleast 2 courses through MOOCs.
 - 13.5.4 *Registration and enrollment*: Clause 6.0 shall apply.
 - 13.5.5 *Evaluation*: The evaluation shall be as per clause 7.0.
 - 13.5.6 *Continuous performance*: Students shall earn a minimum SGPA of 8.0 in all semesters, from fourth to seventh, and without backlogs to be eligible for award of minor degree. Regular and additional subjects shall be considered for SGPA calculation. If a student does not get a minimum SGPA of 8.0 or fails in any subject during fourth to seventh semesters, she/he will lose candidature for minor degree.
 - **13.6** Degree will be issued under the seal of affiliating University.

14.0 Regulations for Lateral Entry Students under R20 UG

Title and application: These rules and regulations may be called R20UG-LE and come into force from academic year 2021-22 and exist in force until superseded by other regulations. These regulations are applicable to students admitted under lateral entry scheme leading to Bachelor's Degree in Technology (B.Tech).

a) *Regulations and curriculum*: The regulations and curriculum of R20UG shall be

applicable in general with the following modifications:

- i. *Entry and duration*: The students will be admitted directly into third semester of regular 4-year B.Tech degree course governed by R20UG regulations. The duration of the course is three academic years.
- ii. *Curriculum*: Third semester to eighth semester curriculum of R20UG.
- iii. *Promotion by credits-earned requirement*: This is applicable for the promotion of astudent from sixth semester to seventh semester only. She/he must earn at least 40% of total credits (rounded to lower integer) from third to fifth semesters for promotion from sixth semester to seventh semester.
- b) Requirements for the award of B.Tech degree:
 - i. Time limit for completion of requirements for award of degree is six academic years from the date of admission.
 - ii. Registered and successfully completed all required credit-bearing and mandatory subjects with a total of 121 credits. (third semester to eighth semester subjects)
 - iii. *Honours/minors designation*: shall earn extra 20 credits in addition to 121 credits.

15.0 Transitory Regulations

15.1 A student who initially joins the Institute in a previous Regulation and has to rejoin in a semester of the present Regulations, due to any reason, shall be bound by the rules of the current Regulations. Board of Studies of the concerned Major will specify, extra or otherwise, academic coursework to be undertaken by such students who join the current Regulations.

THREE WEEK INDUCTION PROGRAM

Introduction

The graduating student must have knowledge and skills in the area of his study. However, he must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he would understand and fulfil his responsibility as an engineer, a citizen and a human being. Besides the above, several meta- skills and underlying values are needed.

1. Induction Program

When new students enter an institution, they come with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose.

We propose a 3-week long induction program for the UG students entering the institution, right at the start. Normal classes start only after the induction program is over. Its purpose is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

2.1 Physical Activity

This would involve a daily routine of physical activity with games and sports. It would start with all students coming to the field at 6 am for light physical exercise or yoga. There would also be games in the evening or at other suitable times according to the local climate. These would help develop team work. Each student should pick one game and learn it for three weeks. There could also be gardening or other suitably designed activity where labor yields fruits from nature.

2.2 Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, music, dance etc. The student would pursue it every day for the duration of the program.

These would allow for creative expression. It would develop a sense of aesthetics and also

enhance creativity which would, hopefully, flow into engineering design later.

2.3 Universal Human Values

The teachers must come from all the departments rather than only one department like HSS or from outside of the Institute.

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It is to open thinking towards the self.

2.4 Literary

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

2.5 Proficiency Modules

This period can be used to overcome some critical lacunas that students might have, for example, English, computer familiarity etc. These should run like crash courses.

2.6 Lectures by Eminent People

This period can be utilized for lectures by eminent people, say, once a week. It would give the students exposure to people who are socially active or in public life.

2.7 Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

2.8 Familiarization to Dept. / Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

Amendments to R20 UG Regulations :-

- 1. Skill courses shall be conducted from III Sem to VI Sem.
- 2. Internships/ Socially relevant projects, which can be conducted during IV Sem& V Sem break, VI Sem & VII Sem break and the same may be evaluated during V & VII semesters.
- 3. The eligibility criteria for Minor/ Honor degree is minimum CGPA of 8.0 and no backlogs, reckoned up to III semester.
- 4. Minimum CGPA of 7.5 with no backlogs up to III semester for registration of Minor and honor degree for SC/ST students.
- 5. The respective departments shall give a list of standard MOOCs providers including SWAYAM whose credentials are endorsed by respective Chairman Board of Studies.
- 6. He/ She has to obtain a certificate from the provider in which he/ She has registered

and submit the same to the concerned department.

7. Any MOOC course selected by the student shall be of 12 weeks course with 3 credits and also from the reputed provider.

Absolute Marks	Letter Grade	Grade Points	Remark
		assigned	
≥ 90	S (Outstanding)	10	Pass
80 - 89	A (Excellent)	9	Pass
70 - 79	B (Very Good)	8	Pass
60 - 69	C (Good)	7	Pass
50 - 59	D (Average)	6	Pass
40 - 49	E (Below Average)	5	Pass
< 40	F (Fail)	0	Fail
Absent	Ab (Absent)	0	Fail
	Ι	0	Result Withheld

8. If provider explicitly declares letter grade, pass or fail and credits of that particular course, the letter grade can be converted to grade point as per the table given below:

- 9. In case of any deviation in the above clause, the committee appointed by the Principal shall take a decision for converting MOOC results into the relevant grade points.
- 10. Credits awarded in the MOOC certificate are directly transferred to the grade sheet.
- 11. If the student fails to complete the MOOCs he/ she has to write two internal tests besides the End examinations conducted by the Institute (offered in place of MOOCs by the department) like other subjects.

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS) VISION & MISSION

VISION:

To evolve as center of repute for providing quality academic programs amalgamated with creative learning and research excellence to produce graduates with leadership qualities, ethical and human values to serve the nation.

MISSION:

M1: To provide high quality education with enriched curriculum blended with impactful teaching-learning practices.

M2: To promote research, entrepreneurship and innovation through industry collaborations.M3: To produce highly competent professional leaders for contributing to Socio-economic development of region and the nation.

DEPARTMENT OF CIVIL ENGINEERING

VISION & MISSION

VISION:

To become a frontrunner in the field of Civil Engineering, and tackle national and global challenges that aligns with the needs of society.

MISSION:

- M1: To provide value added education and cope up with the changes through innovative and dynamic curriculum.
- M2: To engage in research that creates state-of-the-art technologies and futuristic knowledge, with a strong emphasis on meeting the socio-economic requirements of society.
- M3: To produce globally competent professionals with leadership skills, team work and ethical conduct.

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

- PEO1: To excel in professional career in the industry or to be a successful entrepreneur to create a sustainable built environment.
- PEO2: To pursue higher education and involve in research with zeal for lifelong learning.
- PEO3: To demonstrate leadership qualities, ethical values and environmental awareness, to serve the society.

PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Program Outcomes:

PO1 - Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 - Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 - **Design/Development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 - Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 - Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 - The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.

PO7 - Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 - Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.

PO9 - Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 - Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 - Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 - Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

The graduates in Civil Engineering will be able to

PSO 1: Analyze, Design, Construct, Maintain and Operate infrastructural projects.

PSO 2: Assess the environmental impact of various projects and take required measures to curb environmental deterioration.

PSO 3: Use latest softwares pertaining to various streams of Civil Engineering.

CIVIL ENGINEERING

Course Structure

I Semester

S.No	Subject	SUBJECT	SC	L	Т	Р	IM	EM	CR
	Code								
1	2021101	Linear Algebra and Calculus	BSC	3	0	0	40	60	3
2	20EP102	Engineering Physics	BSC	3	0	0	40	60	3
3	2024103	Communicative English	HSMC	3	0	0	40	60	3
4	2014104	Basic Electrical & Electronics Engineering	ESC	3	0	0	40	60	3
5	2003105	Engineering Drawing	ESC	1	0	2	40	60	2
6	2003106	Engineering Drawing Lab	ESC	0	0	2	40	60	1
7	20EP107	Engineering Physics Lab	BSC	0	0	3	40	60	1.5
8	2024108	Communicative English Lab	HSMC	0	0	3	40	60	1.5
9	2014109	Basic Electrical & Electronics Engineering Lab	ESC	0	0	3	40	60	1.5
	Total						360	540	19.5

L - Lecture, T - Tutorial, P – Practical

II Semester

S.No	Subject	SUBJECT	SC	L	Т	Р	IM	EM	CR
	Code								
1	2021201	Differential Equations and Vector Calculus	BSC	3	0	0	40	60	3
2	20EC202	Engineering Chemistry	BSC	3	0	0	40	60	3
3	2005203	C-Programming & Data Structures	ESC	3	0	0	40	60	3
4	2001204	Strength of Materials	ESC	3	0	0	40	60	3
5	20EW205	Engineering Workshop	LC	0	0	3	40	60	1.5
6	2005206	IT Workshop	LC	0	0	3	40	60	1.5
7	20EC207	Engineering Chemistry Lab	BSC	0	0	3	40	60	1.5
8	2005208	C-Programming & Data Structures	ESC	0	0	3	40	60	1.5
		Lab							
9	2001209	Strength of Materials Lab	ESC	0	0	3	40	60	1.5
10	20MC210	Environmental Science	MC	3	0	0	40	0	0.0
	Total					15	400	540	19.5

III Semester

S.No	Subject Code	SUBJECT	SC	L	Т	Р	IM	EM	CR
1	2021302	Probability, Statistics & Numerical Methods	BSC	3	0	0	40	60	3
2	2001302	Geology and Building materials	ESC	3	0	1	40	60	3.5
3	2001303	Advanced Strength of materials	PCC	3	1	0	40	60	4
4	2001304	Fluid Mechanics	PCC	3	0	0	40	60	3
5	2001305	Geomatics	PCC	3	0	0	40	60	3
6	2001306	Fluid Mechanics Laboratory	PCC (LAB)	0	0	3	40	60	1.5
7	2001307	Geomatics Lab	PCC (LAB)	0	0	3	40	60	1.5
8	20013S1	Civil Engineering Workshop	SOC	1	0	2	40	60	2
		(Skill oriented)							
	Total						320	480	21.5

IV Semester

S.No	Subject	SUBJECT	SC	L	Т	Р	IM	EM	CR
	Code								
1	2025401	Business Economics and Accounting for Engineers	HSS	3	0	0	40	60	3
2	2001402	Hydraulics & Hydraulic Machinery	PCC	3	0	0	40	60	3
3	2001403	Soil Mechanics	PCC	3	0	0	40	60	3
4	2001404	Structural Analysis	PCC	3	0	0	40	60	3
5	2001405	Transportation Engineering	PCC	3	0	0	40	60	3
6	2001406	Building Planning and Drawing (AutoCAD)	BSC (LAB)	0	0	3	40	60	1.5
7	2001407	Soil Mechanics Laboratory	PCC (LAB)	0	0	3	40	60	1.5
8	2001408	Transportation Engineering Laboratory	PCC (LAB)	0	0	3	40	60	1.5
9	20014S2	Advanced Civil Engineering Workshop (Skilloriented-2)	SOC	1	0	2	40	60	2
10	2024410	Universal Human Values	HSMC	3	0	0	40	60	3
		19	0	11	400	600	24.5		

V Semester

S.No	Subject	SUBJECT	SC	L	Т	Р	IM	EM	CR			
1	2001501	Hydrology & Irrigation	PCC	3	0	0	40	60	3			
2	2001502	Foundation Engineering	PCC	3	0	0	40	60	3			
3	2001503	Concrete Technology	PCC	3	0	0	40	60	3			
	2001000	PEC-I				0						
4	2001504	Optimization Techniques in Civil Engineering		-	0		40					
	2001505	Advanced Structural Analysis	PEC-I	3	0	0	40	60	3			
	2001506	Remote Sensing & GIS										
		Open Elec	tive-1			•	•		•			
	2005201	Courses offered by: Electrical an	nd Electro	onics I	<u>Engin</u>	eerin	g	<i>c</i> 0	2			
	200E201	Modern Control Theory	OEC-1	3	0	0	40	60	3			
	200E202	Programming Fundamentals for	OEC-1	3	0	0	40	60	3			
		Numerical Computations										
	Courses offered by: Mechanical Engineering											
	200E301	Introduction to Hybrid and Electric Vehicles	OEC-1	3	0	0	40	60	3			
	200E302	Rapid Prototyping	OEC-1	3	0	0	40	60	3			
	200E303	Design for Manufacturing and Assembly	OEC-1	3	0	0	40	60	3			
	200E304	Energy Systems Engineering	OEC-1	3	0	0	40	60	3			
	200E305	Smart Materials	OEC-1	3	0	0	40	60	3			
	Courses offered by: Electronics and Communication Engineering											
5	200E401	Overview of Microcontrollers	OEC-1	3	0	0	40	60	3			
	200E402	Industrial electronics	OEC-1	3	0	0	40	60	3			
	Courses offered by: Computer Science and Engineering											
	200E501	Data Structures	OEC-1	3	0	0	40	60	3			
	200E502	Database Management Systems	OEC-1	3	0	0	40	60	3			
		Courses offered by: Artificial Intell	igence an	d Mac	chine	Lear	ning		1			
	200E3901	Data Structures	OEC-1	3	0	0	40	60	03			
	200E3902	OOP through C++	OEC-1	3	0	0	40	60	03			
		Courses offered by: Hum	anities ar	nd Scie	ences	-	ł					
	200E601	Employability Skills	OEC-1	3	0	0	40	60	03			
	200E602	Advanced Numerical Methods	OEC-1	3	0	0	40	60	03			
	200E604	Basics of Nanotechnology	OEC-1	3	0	0	40	60	03			
	200E605	Write it Right	OEC-1	3	0	0	40	60	03			
	200E606	Human Capital Management	OEC-1	3	0	0	40	60	03			
	200E607	Engineering Materials	OEC-1	3	0	0	40	60	03			

6	20995M2	Organizational behaviour	MC	2	0	0	40	00	0
7	2001507	Concrete Technology Lab	PCC	0	0	3	40	60	1.5
8	2001508	Structural Analysis and Design Lab (Staad Pro)	PCC	0	0	3	40	60	1.5
9	20015S3	SketchUp-3D modelling	SC	1	0	2	40	60	2
10	2001509	Community Service Project	PROJ	0	0	3	100	-	1.5
		Total		18	00	11	460	480	21.5

VI Semester

S.No	Subject Code	SUBJECT	SC	L	Т	Р	IM	EM	CR		
1	2001601	Environmental Engineering	PCC	3	0	0	40	60	3		
2	2001602	Water Resources Engineering	PCC	3	0	0	40	60	3		
3	2001603	Design of Reinforced Concrete Structures	PCC	3	0	0	40	60	3		
		PEC-II									
4	2001604	Pre-stressed Concrete									
	2001605	Bridge Engineering	PEC-II	3	0	0	40	60	3		
	2001606	Traffic Engineering									
		Courses offered	by: HSS	E							
_	2006601	Human Resource Development	HSSE					60			
5	2006602	Digital Marketing		3	0	0	40		3		
	2006603	Project Management									
6	20993M3	Constitution of India	MC	2	0	0	40	00	0		
7	2001607	Environmental Engineering Lab	PCC	0	0	3	40	60	1.5		
8	2001608	Computer Aided Design and Drafting Lab	PCC	0	0	3	40	60	1.5		
9	2001609	Advanced Concrete Technology Lab	PCC	0	0	3	40	60	1.5		
10	20016S4	Advanced English Communication skills lab	SC	1	0	2	40	60	2		
		Total		18	00	11	400	540	21.5		

VII Semester

S.No	Subject Code	SUBJECT	SC	L	Т	Р	IM	EM	CR	
	0000	PEC-III								
1	2001701	Ground Improvement Techniques	PEC-III					60		
	2001702	Quantity Estimation of structures		3	0	0	40		3	
	2001703	Finite Element Methods								
		PEC-IV								
2	2001704	Design of Steel Structures		3				60	3	
	2001705	Water Supply Engineering	PEC-IV		0	0	40			
	2001706	Advanced Concrete Structures								
		PEC-V								
3	2001707	Design and Drawing of Irrigation Structures			0	0	40	60		
	2001708	Construction Practice and Management	PEC-V	3					3	
	2001709	Urban Transportation Planning								
	Open Elective-2									
	Courses offered by: Electrical and Electronics Engineering									
	200E203	Energy Conversion Systems	OEC-2	3	0	0	40	60	3	
	200E204	Smart Grid	OEC-2	3	0	0	40	60	3	
	Courses offered by: Mechanical Engineering									
	200E306	Automotive Electronics, Sensors & Drives	OEC-2	3	0	0	40	60	3	
	200E307	Robotics and Applications in Manufacturing	OEC-2	3	0	0	40	60	3	
4	200E308	Sensors in Intelligent Manufacturing	OEC-2	3	0	0	40	60	3	
4	200E309	Non-Conventional Sources of Energy	OEC-2	3	0	0	40	60	3	
	200E310	Supply Chain Management	OEC-2	3	0	0	40	60	3	
	Courses offered by: Electronics and Communication Engineering									
	200E403	Introduction to VLSI	OEC-2	3	0	0	40	60	3	
	200E404	Principles of Communication	OEC-2	3	0	0	40	60	3	
	Courses offered by: Computer Science and Engineering									
	200E503	Java Programming	OEC-2	3	0	0	40	60	3	
	200E504	Web Designing	OEC-2	3	0	0	40	60	3	
	Courses offered by: Artificial Intelligence and Machine Learning									

	200E3903	Operating Systems	OEC	3	0	0	40	60	03		
	200E3904	Data Base Management Systems	OEC	3	0	0	40	60	03		
	Courses offered by: Humanities and Sciences										
	200E603	Mathematical Statistics for Data Science and Data Analytics	OEC	3	0	0	40	60	03		
	200E608	Basics of Electrical, Magnetic and Optoelectronic materials	OEC	3	0	0	40	60	03		
	200E609	Corrosion & Control	OEC	3	0	0	40	60	03		
	200E615	Academic Writing	OEC	3	0	0	40	60	03		
	20OE611	Basics Financial Management for Engineers	OEC	3	0	0	40	60	03		
		Open Elec	ctive-3								
	Courses offered by: Electrical and Electronics Engineering										
	200E205	Intelligent Control Techniques	OEC-3	3	0	0	40	60	3		
	200E206	Electrical System Estimation & Costing	OEC-3	3	0	0	40	60	3		
	Courses offered by: Mechanical Engineering										
	200E311	Entrepreneurship	OEC-3	3	0	0	40	60	3		
	200E312	Solar Energy Systems	OEC-3	3	0	0	40	60	3		
	200E313	Internal Combustion Engine	OEC-3	3	0	0	40	60	3		
	Courses offered by: Electronics and Communication Engineering										
	200E405	Electronic Instrumentation and measurements	OEC-3	3	0	0	40	60	3		
5	200E406	Introduction to IOT	OEC-3	3	0	0	40	60	3		
	200E407	Nano Electronics	OEC-3	3	0	0	40	60	3		
		Courses offered by: Computer	Science a	and l	Engir	neeri	ng				
	200E505	Operating System	OEC-3	3	0	0	40	60	3		
	20OE506	R Programming	OEC-3	3	0	0	40	60	3		
	Courses offered by: Artificial Intelligence and Machine Learning										
	200E3905	Cyber Security	OEC-3	3	0	0	40	60	03		
	200E3906	Java Programming	OEC-3	3	0	0	40	60	03		
	Courses offered by: Humanities and Sciences										
	200E612	Transforms and Its Applications	OEC-3	3	0	0	40	60	3		
	200E613	Physics of Renewable Energy	OEC-3	3	0	0	40	60	3		
	200E614	Fuel Technology	OEC-3	3	0	0	40	60	3		
	200E615	Professional Communication	OEC-3	3	0	0	40	60	3		

	200E616	Digital and Social Media Management	OEC-3	3	0	0	40	60	3		
Open Elective -4											
	Courses offered by: Electrical and Electronics Engineering										
	200E207	Basics of Power Electronics	OEC-4	3	0	0	40	60	3		
	200E208	System Reliability Concepts	OEC-4	3	0	0	40	60	3		
	Courses offered by: Mechanical Engineering										
	200E314	Energy Auditing	OEC-4	3	0	0	40	60	3		
	200E315	Sustainable Engineering	OEC-4	3	0	0	40	60	3		
	200E316	Industrial Engineering & Management	OEC-4	3	0	0	40	60	3		
	Courses offered by: Electronics and Communication Engineering										
	200E408	Fundamentals of RADAR Engineering.	OEC-4	3	0	0	40	60	3		
	200E409	Biomedical Instrumentation	OEC-4	3	0	0	40	60	3		
6	200E410	Digital Circuits	OEC-4	3	0	0	40	60	3		
	Courses offered by: Computer Science and Engineering										
	200E508	Python Programming	OEC-4	3	0	0	40	60	3		
	200E509	Cloud Computing	OEC-4	3	0	0	40	60	3		
	Courses offered by: Artificial Intelligence and Machine Learning										
	200E3907	Data Analytics with Python	OEC-4	3	0	0	40	60	3		
	200E3908	Web Designing using PHP	OEC-4	3	0	0	40	60	3		
	Courses offered by: Humanities and Sciences										
	200E617	Operations Research	OEC-4	3	0	0	40	60	3		
	200E618	Fundamentals of Quantum Computation and Nano photonics	OEC-4	3	0	0	40	60	3		
	200E619	Green Chemistry & Technology	OEC-4	3	0	0	40	60	3		
	200E620	Creative Writing	OEC-4	3	0	0	40	60	3		
	200E621	Materials Management	OEC-4	3	0	0	40	60	3		
7	2001585	Practices in Geo-Technical Engineering	SOC-V	1	0	2	40	60	2		
8	2001710	Industrial/Research Internship	PR	0	0	6	100	-	3		
		Total		19	00	08	380	420	23		

VIII Semester

S.No	Subject	SUBJECT	SC	L	Т	Р	IM	EM	CR
	Code								
1	2001801	Project Work/Internship	PROJ	-	-	-	40	60	12
		Total		-	-	-	40	60	12

B.Tech I SEM – CE (R20UG)
Course T	itle Linear	Algeb	ra &	Calc	ulus	B.Tech	CE I Sem	n (R20)				
Course C	ode Category	Hou	rs/We	ek	Credits	Max	ximum Ma	ırks				
202110	Basic Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total				
	(BSC)	3	0	0	3	40	60	100				
	Mid Exam Du	Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs										
Course O	Objectives:											
This cours	course will illuminate the students in the concepts of calculus and linear algebra.											
To equip t	the students with st	andard c	oncept	s and	tools at an	intermediate to	advanced l	evel				
mathemat	ics to develop the c	onfidenc	e and	ability	y among the	e students to han	dle variou	s real world				
problems	and their applicatio	ns.										
Course O	utcomes: On succe	essful co	mpleti	on of	this course,	, the students wi	ll be able t	0				
CO 1	Develop the use of	matrix a	lgebra	techn	iques that is	s needed by eng	ineers for p	practical				
6	applications.		U		•	• •	-					
CO 2	Utilize mean value	theorem	s to rea	al life	problems.							
CO 3 (Classify the functions of several variables which is useful in optimization techniques.											
CO 4	Evaluate multiple integrals.											
CO 5	Define Beta and Gamma functions.											

<u>UNIT-I</u>

Matrices: Rank of a matrix by Echelon form, Normal form, Solving system of homogeneous and non-homogeneous linear equations. Eigen values and Eigen vectors for real matrices – Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley–Hamilton theorem. Diagonalisation by orthogonal transformation.

<u>UNIT-II</u>

Mean Value Theorems: Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders (without proof), related problems.

UNIT-III

Multivariable Calculus: Partial derivatives, total derivative, chain rule, change of variables, Jacobians, Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

UNIT-IV

Multiple Integrals: Evaluation of double integrals in Cartesian coordinates and polar coordinates – Change of variables in double integrals – Change the order of integration in double integrals – Evaluation of triple integrals in Cartesian and polar coordinates – Change of variables between cartesian, cylindrical and spherical polar coordinates.

UNIT-V

Beta and Gamma functions: Beta and Gamma functions and their properties, relation between Beta and Gamma functions, evaluation of definite integrals using Beta and Gamma functions.

Text Books:

- 1. Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers-43 edition 2014.
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Publications, 9th edition-2013.
- 3. Introductory Linear Algebra with applications, Kolman, Bernard Hill, David R
- 4. Linear Algebra, Hoffman Kennethkunze Ray

- Higher Engineering Mathematics, B.V. Ramana, Mc. Graw Hill Education (India) Pvt. Ltd, New Delhi, 11th Edition, Reprint 2010.
- 2. Linear Algebra: A Modern Introduction, D Poole, 2nd Edition, Brooks/Cole, 2005.
- 3. A Text Book of Engineering Mathematics, N.P. Bali and Manish Goyal, Lakshmi Publications, Reprint 2008
- 4. Linear Algebra and its applications, Gilbert Strang.

Course Ti	itle	Engi	neeri	ng Ph	ysics		B.Tech (CE I Sem (R20)		
Course Co	ode	Category	Hou	ırs/W	eek	Credits	Maxi	mum Marl	KS		
20EP102	2	Basic Science (BSC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
			3	0	0	3	40	60	100		
	Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs										
Course Objectives:											
• To r	• To make a bridge between the physics in school and engineering courses.										
• To i	• To identify the importance of the optical phenomenon i.e. interference, diffraction related to										
its E	its Engineering applications.										
 Το ι 	ınder	stand the mechani	isms c	of emi	ssion	of light, the	use of lasers as	light source	es for low		
and	high	energy applicatio	ns, stu	idy of	prop	agation of lig	ght wave throug	h optical fil	bres along		
with	with engineering applications.										
• To c	To open new avenues of knowledge in magnetic materials which find potential in the										
eme	rging	g micro device app	olicati	ons? (Consi	dering the si	gnificance of mi	cro miniatu	irization		
of e	lectro	onic devices and s	ignific	cance	of lov	w dimension	al materials, the	basic conc	epts of		
nano	omate	erial, their propert	ies an	d app	licatio	ons in moder	n emerging tech	inologies ar	e elicited.		
• To f	amılı	arize the concepts	s of th	eoreti		coustics to pi	ractical use in er	igineering f	ield. To		
expl	lain t	he significance of	ultras	ound	and 1	ts application	n in NDT for div	versified en	gineering		
appl	11cati	$\sum_{i=1}^{n}$. ,	1 D 1	1.4	• 1		
• 10 €	eniigi	iten the periodic a	rrang		t of at	oms in cryst	als, Bragg's law	and to prov	vide		
		ntais related to str		u ana	iysis t n of th	nrougn pow	a students will h	neurioù.			
	nder	stand the different	roalm	$\frac{1}{100}$	hveic	is course, in	polications in b	oth scientifi	ic and		
$\begin{bmatrix} CO1 \end{bmatrix}_{to}^{U}$	Understand the different realms of physics and their applications in both scientific and										
CO2 Id	Identify the wave properties of light and the interaction of energy with the matter										
$\begin{array}{c} CO2 & IC \\ CO3 & II \end{array}$	lustre	te the response of	mag	netic r	nateri	als to the an	nlied electric an	d magnetic	fields		
CO3 II	xnlai	n the basic concer	ots of		tics a	nd ultrasonic			110100.		
	lassit	fy the important p	ropert	ies of	cryst	als like the r	vresence of long	-range orde	r.		
CO5	periodicity and structure determination using X-ray diffraction technique										
P	u	iercy and Birdeture	40101	minut	ion u			7***			

<u>UNIT-I</u>

Wave Optics: Interference- Principle of superposition – Interference of light – Conditions

for sustained interference - Interference in thin films (Reflection Geometry) - Colors in thin

films - Newton's Rings - Determination of wavelength and refractive index.

Diffraction - Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to

single slit, double slit and N-slits (qualitative) – Grating spectrum.

<u>UNIT-II</u>

Lasers and Fiber optics: Lasers- Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd-YAG laser – He-Ne laser – Semiconductor diode laser-Applications of lasers.

Fiber optics- Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Block diagram of Optical fiber Communication system – Propagation Losses (qualitative) – Applications.

<u>UNIT-III</u>

Dielectric and Magnetic Materials: Dielectric Materials- Introduction – Dielectric polarization – Dielectric polarizability, Susceptibility and Dielectric constant – Types of polarizations: Electronic, Ionic and Orientation polarizations (Qualitative) – Lorentz internal field – Clausius-Mossotti equation.

Magnetic Materials- Introduction to magnetic materials (Origin of magnetic moment of an atom and Classification of magnetic materials) –Weiss theory of ferromagnetism-soft ferrites and hard ferrites- Hysteresis – Soft and Hard magnetic materials- Applications magnetic materials.

UNIT-IV

Quantum Mechanics, Free Electron Theory: Quantum Mechanics- Dual nature of matter – Schrodinger's time independent and dependent wave equation – Significance of wave function – Particle in a one-dimensional infinite potential well.

Free Electron Theory- Classical free electron theory (Merits and demerits only) – Quantum free electron theory – Equation for electrical conductivity based on quantum free electron theory – Fermi-Dirac distribution – Density of states – Fermi energy.

<u>UNIT – V</u>

Semiconductors and Superconductors: Semiconductors- Introduction – Intrinsic semiconductors – Electrical conductivity – Fermi level – Extrinsic semiconductors –

Dependence of Fermi energy on carrier concentration and temperature – Drift and diffusion currents – Einstein's equation – Direct and indirect band gap semiconductors – Hall effect – Hall coefficient – Applications of Hall effect.

Superconductors- Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory – Josephson effects (AC and DC) –High T_c superconductors – Applications of superconductors.

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Krishnasagar, S.Chand and Company
- 2. Optics- Ajoy Ghatak , McGraw Hill Publishers,6th edition,1stJanuary,2018.
- 3. Fundamental of Physics- Halliday, Resnick and Walker, Wiley publications.
- 4. Solid State physics, Hall H E, paramount Publications

- 1. Engineering Physics K. Thyagarajan, McGraw Hill Publishers.
- 2. Acoustic Waves and Oscillations- Sen S N, Prism Publications.
- 3. Lasers & Non-linear Optics Nelkon M Parker P, Arnold Heinemann Publications
- 4. Solid State Physics-Kittels-8th edition,1st January-2015, Wiley Publications.

Course Title	Commu	nicat	ive E	nglisl	ı	B.Tech CE I Sem (R20)				
Course Code	Category	Hours/Week			Credits	Max	kimum Ma	arks		
2024103	Humanities and Social Sciences Monogement	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(HSMC)	3	0	0	3	40	60	100		
N	Aid Exam Duration	on: 1.	5 Hrs	5	l	End Exa	m Duratio	on: 3 Hrs		
 Course Object Facilitat spoken Focus o authenti Help im and stru Impart e well org Provide use in spoken 	 Course Objectives: Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing 									
Course Outcon	nes: On successfu	l com	pletio	$\frac{n \text{ of } t}{ds - s^2}$	his course,	the students wi	II be able t	0		
CO2 Und	Understand the difference between spoken and written English									
CO2 Ond CO3 Ana	lyze the rules in la	ingua	$\frac{1}{2}$ ge for	chan	ging the fo	orm of sentences	5			
CO4 Illus	trate the factors th	at inf	luence	e gran	nmar and v	vocabulary in sp	eaking and	l writing		
CO5 Clas	Classify the parts of speech, tenses and sentence structures.									

<u>UNIT-I</u>

Lesson: On the Conduct of Life: William Hazlitt

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Writing:** Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph.

Grammar and Vocabulary: Parts of Speech; Word formation, synonyms and antonyms; Idioms and Phrases; phrasal verbs.

<u>UNIT-II</u>

Lesson: The Brook: Alfred Tennyson

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. **Writing:** Paragraph writing (specific topics) using suitable cohesive devices; mechanics of writing - punctuation, capital letters.

Grammar and Vocabulary: Sentence structure; articles; Tenses; Prepositions.

UNIT-III

Lesson: A City Night Peace - Oliver Goldsmith

Listening: Listening for global comprehension and summarizing what is listened to. Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed Reading: Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Writing: Summarizing, Paragraph Writing Grammar and Vocabulary: Voice; Reported Speech; Degrees of Comparison, Subject with agreement.

UNIT-IV

Lesson: Being Rich, Being Good - Chetan Bhagat

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Letter Writing: Official Letters/Report Writing

Grammar and Vocabulary: Information Transfer; Simple, Compound and Complex sentences; Question Tags

UNIT-V

Lesson: Politics and the English Language: George Orwell

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Reading: Reading for comprehension. **Writing:** Writing structured essays on specific topics using suitable claims and evidences. **Grammar and Vocabulary:** Reading Comprehension; Dialogue Writing; Common Errors.

Text Books:

1. Language and Life: A Skills Approach- I Edition 2019, Orient Black Swan

Reference Books:

1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.

2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.

3. Raymond Murphy's English Grammar in Use Fourth Edition (2012) E-book

- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Oxford Learners Dictionary, 12th Edition, 2011

6. Norman Lewis Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary (2014)

7. Speed Reading with the Right Brain: Learn to Read Ideas Instead of Just Words by David Butler

Web links:

www.englishclub.com www.easyworldofenglish.com www.languageguide.org/english

Course '	Title Basic E	lectri Eng	cal & l ineerin	Electr 1g	onics	B.Tech CI	E I Sem (R2	20)			
Course	Code Category	Но	urs/We	ek	Credits	Maximum Marks					
20141	04 Engineer ing Science	L	Т	Р	С	ContinuousEndInternalExamAssessmentT					
	(ESC)	3	0	0	3	60	40	100			
	Mid Exam D	uratior	n: 1.5 H	lrs		End Exam I	Duration: 3	Hrs			
Course	Objectives:										
The obje	ective of the course is to learn basics of DC and AC circuits, Electrical Machines,										
Transfor	ransformers and Power Systems. Theory, construction, and operation of electronic devices, biasing of										
BJTs and	d FETs, design and	constru	ction of	ampli	fiers, conce	pts & principles of 1	ogic device	s.			
Course	Outcomes: On succ	essful o	complet	ion of	this course,	, the students will be	able to				
CO1	Understand the bas machines and power	ic fund er syste	amenta m funda	ls of D amenta	C & AC ciı ıls	rcuits, network reduc	ction techni	ques,			
CO2	Understand theory, its applications, we	, constr orking o	uction, a	and op stors, r	eration of e	lectronic devices, we oblight the second sec	orking of di tions.	iodes and			
CO3	Determine the currents, voltages using mesh and nodal analysis, Average and RMS values for different waveforms, equivalent circuit parameters using OC & SC test of single phase transformer.										
CO4	Obtain the EMF eq	uation	and cha	racteri	stics of dc 1	machines and Induct	ion motor				
CO5	Analyze small sign amplifiers using pr	al amp oper bi	lifier cii asing ci	rcuits t rcuits t	o find the a to fix up pro	mplifier parameters. oper Q point	Design sm	all signal			

Part A: Basic Electrical Engineering

<u>UNIT-I</u>

DC Circuits: Electrical circuit elements (R - L and C) - Kirchhoff laws - Series and parallel connection of resistances with DC excitation. Superposition Theorem. Simple Numerical Problems.

AC Circuits: Representation of sinusoidal waveforms – Average and RMS values - phasor representation - real power - reactive power - apparent power - power factor - Analysis of single- phase ac circuits consisting of RL - RC - RLC series circuits, simple numerical problems.

<u>UNIT – II</u>

DC Machines: Principle and operation of DC Generator - EMF equations - OCC characteristics of DC generator – principle and operation of DC Motor – Torque equation –

Performance Characteristics of DC Motor, speed control (Flux & Armature control of shunt motor), Simple numerical problems.

Transformers: Principle and operation of Single Phase Transformer – Emf equation, equivalent circuit, OC and SC tests on transformer, simple numerical problems.

Induction Motor: Principle and operation of 3-phase Induction Motor [Elementary treatment only].

<u>UNIT – III</u>

Basics of Power Systems: Typical AC power supply scheme – Generation of 3-phase supply, Definition of short, medium and long transmission lines – Concepts of AC & DC distribution system.

Text Books:

- D. P. Kothari and I. J. Nagrath "Basic Electrical Engineering" Tata McGraw Hill -2010.
- 2. V.K. Mehta & Rohit Mehta, "Principles of Power System" S.Chand 2018.
- 3. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.
- 4. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.

- L. S. Bobrow "Fundamentals of Electrical Engineering" Oxford University Press - 2011.
- 2. E. Hughes "Electrical and Electronics Technology" Pearson 2010.
- C.L. Wadhwa "Generation Distribution and Utilization of Electrical Energy", 3rd Edition, New Age International Publications.
- Fundamentals of Electric Circuits Charles K. Alexander and Matthew. N. O. Sadiku, Mc Graw Hill, 5th Edition, 2013.

Part B: Basic Electronics Engineering

<u>UNIT – I</u>

Diodes and Applications: Semiconductor Diode, Diode as a Switch& Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Operation and Applications of Zener Diode, LED, Photo Diode.

Transistor Characteristics: Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Biasing of Transistor Configuration; Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Concepts of Small Signal Amplifiers –CE & CC Amplifiers.

<u>UNIT – II</u>

Operational Amplifiers and Applications: Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal Op-Amp, Concept of Virtual Ground; Op-Amp Applications - Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator.

<u>UNIT – III</u>

Digital Electronics: Logic Gates, Simple combinational circuits–Half and Full Adders, BCD Adder. Latches and Flip-Flops (S-R, JK and D), Shift Registers and Counters. Introduction to Microcontrollers and their applications (Block diagram approach only).

Text Books:

1. R.L.Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2007.

- 2. Ramakanth A. Gayakwad, Op-Amps & Linear ICs, 4thEdition, Pearson, 2017.
- 3. R. P. Jain, Modern Digital Electronics, 3rd Edition, Tata Mcgraw Hill, 2003.
- 4. David A. Bell, "Electronic Devices and Circuits", Oxford; Fifth edition.

- 1. Santiram Kal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
- 2. Jimmie J Cathey, "Electronic Devices and Circuits," Schaum"s outlines series, 3rd edition, McGraw-Hill (India), 2010.
- R. S. Sedha, A Text Book of Electronic Devices and Circuits, S. Chand & Co, 2010.
- 4. Anil K. Maini, Varsha Agrawal, "Electronic Devices and Circuits", John Wiely, 2nd edition.

Course Tit	le Eng	ineer	ing D	rawin	ıg	B.Tecl	h CE I Sem	(R20)			
Course Co	de Category	Ho	urs/W	eek	Credits	Ma	ximum Mar	ks			
2003105	Engineer ing Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
	(ESC)	1	0	2	2	40	60	100			
	Mid Exam Du	ration	n: 1.5 I	Irs		End Exa	am Duration	: 3 Hrs			
Course Ob	Objectives:										
• Brir	Bring awareness that Engineering Drawing is the Language of Engineers.										
FamTeamDev	 Familiarize how industry communicates technical information. Teach the practices for accuracy and clarity in presenting the technical information. Develop the engineering imagination essential for successful design. 										
Course Ou	tcomes: On succ	essful	comp	letion of	of this cour	se, the students w	will be able to)			
CO1 [D1 Draw various curves applied in engineering										
$\overline{\mathbf{CO2}}$ S	Show projections of solids and sections graphically.										
CO3 I	Draw the develop	ment	of surfa	aces of	solids.						
CO4 k	Know draw ortho	graphi	c and i	somet	ric projecti	ons.					

CO 5 Evaluate different methods of perspective view.

<u>UNIT-I</u>

Introduction to Engineering Drawing: Principles of Engineering Drawing and its Significance-Conventions in drawing-lettering - BIS conventions.

a) Conic sections including the rectangular hyperbola- general method only,

b) Cycloid, epicycloids and hypocycloid c) Involutes.

<u>UNIT – II</u>

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line. Projections of regular plane surfaces.

Projections of solids: Projections of regular solids inclined to one or both planes by rotational or auxiliary views method.

<u>UNIT – III</u>

Sections of solids: Section planes and sectional view of right regular solids- prism, cylinder, pyramid and cone. True shapes of the sections.

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts.

<u>UNIT – IV</u>

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

$\underline{UNIT} - \underline{V}$

Perspective projection –applications of perspective view –terminology of perspective view- methods of drawing perspective view-simple problems.

Text Books:

1. K.L. Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.

- 2. N.D.Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.
- 3. Interpreting Engineering DrawingsBook by Ted Branoff.
- 4. Mechanical Drawing: Board & CAD TechniquesBook by Jay D. Helsel.

- Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, Copy Right,2009
- Venugopal, Engineering Drawing and Graphics, 3/e, New Age Publishers,2000
- 3. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 4. K.C.John, Engineering Graphics, 2/e, PHI,2013

Course Title	e Engine	ering	Drav	ving	Lab	B.Tech	CE I Sem	(R20)			
Course Cod	e Category	Ho	urs/W	eek	Credits	Maximum Marks					
2003106	Engineeri ng Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
	(ESC)	0	0	2	1	40	60	100			
	Mid Exam Duration: End Exam Duration: 3 Hrs										
Course Objectives:											
• Fami	liarize how indu	stry co	ommur	nicates	s technical	information.					
Teacl	the practices for	or accu	iracy a	nd cla	rity in pres	senting the technic	cal informat	tion.			
• Deve	lop the engineer	ing im	aginat	ion es	sential for	successful design					
• Bring	awareness that	Engin	eering	Draw	ing is the I	Language of Engin	neers.				
Course Out	comes: On succe	essful	compl	etion of	of this cour	se, the students w	ill be able t	0			
CO1 Us	Use computers as a drafting tool.										
CO 2 Dr	Draw isometric drawings using CAD packages.										
CO 3 At	alyze orthograp	hic dra	awings	using	g CAD pac	kages.					

Computer Aided Drafting:

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, poly lines, trimming, extending, stretching, fillets, arrays, dimensions.

Dimensioning principles and conventional representations.

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Text Books:

- 1. K. Venugopal, V. Prabhu Raja, Engineering Drawing + Auto Cad, New Age International Publishers.
- 2. Kulkarni D.M, AP Rastogi and AK Sarkar, Engineering Graphics with Auto Cad, PHI Learning, Eastern Economy editions.
- 3. Mechanical Drawing: Board & CAD TechniquesBook by Jay D. Helsel.

4. A Textbook of Engineering Drawing: For Undergraduate ...Book by Addisu Dagne Zegeye

- 1. T. Jayapoovan, Engineering Graphics using Auto Cad, Vikas Publishing House
- 2. Linkan Sagar, BPB Publications, Auto Cad 2018 Training Guide.
- 3. K.C.John, Engineering Graphics, 2/e, PHI,2013
- 4. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course '	Гitle	Engineeri	ng Pl	iysic	s Lab)	B.Tech	CE I Sem (R20)	
Course (Code	Category	Hou	irs/W	Veek	Credits	Maxi	imum Marl	KS	
20EP1	07	Engineering Science (BSC)	L T P		Р	С	Continuous Internal Assessment	nuous End rnal Exam sment		
		(1130)	0	0	3	1.5	40	60	100	
Mid Exam Duration: End Exam Duration: 3 Hrs										
Course O	bjective	es:								
• Un	derstan	d the role of Optical	fiber	parar	neters	s in engine	ering application	ons		
 Ide Ap Illu Reafine 	 Identify the generation of magnetic field through current carrying conductor. Apply the concepts of interference and diffraction. Illustrates the magnetic materials applications. Recognize the significance of laser by studying its characteristics and its application in finding the particle size. 									
Course O	utcome	s: On successful con	ipleti	on of	this c	course, the	students will b	e able to		
CO1 (Operate	various optical and e	electro	onic i	nstru	ments.				
CO 2 A	Apply the concepts of interference and diffraction to determine various parameters									
CO 3 E	Estimate wavelength of laser and particles size using laser.									
CO 4 E	Evaluate	the acceptance angl	e of a	n opt	tical f	iber and n	umerical apertu	re.		
CO 5 F	5 Plots the intensity of the magnetic field of circular coil carrying current with distance									

Note: In the following list, out of 12 experiments, any 8 experiments must be performed in a semester

List of Experiments:

1. Determine the thickness of the wire using wedge shape method

Experimental outcomes:

Operates optical instrument like travelling microscope.

Estimate the thickness of the wire using wedge shape method.

Identifies the formation of interference fringes due to reflected light from non-uniform thin film.

2. Determination of the radius of curvature of the lens by Newton's ring method

Experimental outcomes:

Operates optical instrument like travelling microscope.

Estimate the radius of curvature of the lens.

Identifies the formation of interference fringes due to reflected light from non-uniform thin film.

Plots the square of the diameter of a ring with no. of rings.

3. Determination of wavelength by plane diffraction grating method

Experimental outcomes:

Operates optical instrument like spectrometer.

Estimate the wavelength of the given source.

Identifies the formation of grating spectrum due diffraction.

4. Determination of dispersive power of prism.

Experimental outcomes:

Operates optical instrument like spectrometer.

Estimate the refractive index and dispersive power of the given prism.

Identifies the formation of spectrum due to dispersion.

5. Determination of wavelength of LASER light using diffraction grating.

Experimental outcomes:

Operates various instrument.

Estimate the wavelength of laser source.

Identifies the formation of grating spectrum due diffraction.

6. Determination of particle size using LASER.

Experimental outcomes:

Operates various instrument.

Estimate the Particles size using laser.

Identifies the application of laser.

7. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the numerical aperture and acceptance angle of a given optical fiber.

Identifies the significance of numerical aperture and acceptance angle of an optical fiber in various engineering applications.

8. Determination of dielectric constant by charging and discharging method.

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the dielectric constant of the given substance.

Identifies the significance of dielectric constant in various devices.

9. Magnetic field along the axis of a circular coil carrying current –Stewart Gee's method.

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the magnetic field along the axis of a circular coil carrying current.

Plots the intensity of the magnetic field of circular coil carrying current with distance

10. Study the variation of B versus H by magnetizing the magnetic material (B-H curve)

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the hysteresis loss, coactivity and retentivity of the ferromagnetic material.

Classifies the soft and hard magnetic material based on B-H curve.

Plots the magnetic field H and flux density B.

11. To determine the resistivity of semiconductor by Four probe method

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the resistivity of a semiconductor.

Identifies the importance of four probe method in finding the resistivity of semiconductor.

12. To determine the energy gap of a semiconductor

Experimental outcomes:

Operates various instruments and connect them as per the circuit.

Estimate the energy gap of a semiconductor.

Illustrates the engineering applications of energy gap.

Plots 1/T with log R.

Text books:

- 1. S.Balasubramanian, M.N.Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- Physics Laboratory Manual by Loyd D H, Cengage learning, 4Th International Edition 2014.
- 3. Et.Al. Engineering Physics Lab Manual by Madhusudhana Rao, SCITECH PUBLICATIONS (INDIA) PVT. LTD, 2015.
- 4. Practical Physics by K. Venugopalan (Author), Vimal Saraswat (Author), Himanshu Publications (1 January 2018)

Reference Books:

- 1. Physics Laboratory Experiments, by Jerry Wilson (Author), Cecilia A. Hernandez Hall (Author), Brooks/cole; 7th edition (11 June 2009)
- Lab manual Physics, R Rangarajan, R P Manchanda, R K Gupta, Rajesh Kumar Neena Sinha- New Saraswati House
- 3. Practical Physics by Kumar P. R. Sasi, Prentice-Hall of India Pvt.Ltd

Weblink:

1. http://vlab.amrita.edu/index.php - Virtual Labs, Amrita University.

 $[\]setminus$

Course Tit	le Communi	Communicative English LabB.Tech CE I Sem (R20)										
Course Coo	le Category	Hours/Week Credits				Max	ximum Ma	rks				
2024108	Humanities and Social Sciences	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total				
	(HSMC)	0	0	3	1.5	40	60	100				
	Mid Exam Duration:End Exam Duration: 3 Hrs											
Course Obj	ectives:					•						
 Stude learn Stude Stude publi Stude writi 	 Course Objectives: Students will be exposed to a variety of self-instructional, learner friendly modes of language learning. Students will learn better pronunciation through stress, intonation and rhythm Students will be trained to use language effectively to face interviews, group discussions, public speaking. Students will be initiated into greater use of the computer in resume preparation, report writing, format making Etc. 											
Course Out	comes: On successfu	l cor	npleti	on of	this course	e, the students w	vill be able t	0				
<u>CO1</u>	Describe objects, places and persons											
<u>CO 2</u>	Understand the listening process and answer the questions related to it.											
CO 3	Analyze phonetics w	ith ex	ampl	es								
CO 4	Illustrate different mo	odes	of cor	nmun	ication ski	lls						
CO 5	Classify LSRW Skill	S										

<u>UNIT-I</u>

- Listening Skills
- Phonetics
- Introducing oneself

<u>UNIT-II</u>

- Describing objects
- JAM / Interpretation of Hypothetical Situations
- Role play

<u>UNIT-III</u>

• Hypothetical situations (If..... were)

- Elocution
- TED talks videos

UNIT-IV

- Visual Description
- Situational conversations

UNIT-V

- Oral Presentations
- PowerPoint presentations

Suggested Software:

- Orell
- Walden Infotech
- Young India Films
- K-Van solutions

Reference Books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. A Textbook of English Phonetics for Indian Students by T.Balasubramanyam

Web Links:

www.esl-lab.com www.englishmedialab.com www.englishinteractive.net

Course	Title Basic El E	ectrio ngine	cal & ering	Elect: Lab	ronics	B.Te	ech CE I Sen	n (R20)				
Course	Code Category	Ho	urs/W	eek	Credits	Maximum Marks						
20141	Basic 09 Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total				
	(BSC)	0	0	3	1.5	40	60	100				
	Mid Exam l	Durati	ion:			End E	xam Duratio	on: 3 Hrs				
Course	Objectives:											
The obje	bjective of the course is to verify KCL, KVL, superposition theorem, measurement of real &											
reactive	power for RL & RC	C circu	its, pei	forma	nce charac	teristics of DC	machines and	l transformers.				
Analyze	the characteristics of	of Dio	des, BJ	T, MC	OSFET, UJ	T, design the ar	nplifier circu	its from the				
given spe	ecifications and ver	ificatio	on of ti	uth tab	oles.							
Course	Outcomes: On succ	essful	comp	letion of	of this cour	rse, the students	will be able	to				
	Verify Kirchhoff's	laws,	superp	ositior	n theorem t	heoretically and	d practically	for any given				
CO 1	circuit, truth table f	for dif	ferent l	ogic g	ates and m	easure real & re	eactive power	r for RL & RC				
	circuits			00			1					
CO 2	Illustrate various cl	naracte	eristics	of DC	machines	from the measu	ured data (Pra	actically)				
CO 3	Obtain the efficient	cy and	regula	tion fo	or single pl	nase transforme	r	• /				
CO 4	Learn the characteristics of basic electronic devices like PN junction diode, Zener diode & BJT											
CO 5	Analyze the applic	ation o	of diod	e as rec	ctifiers, cli	ppers and clam	pers and othe	r circuits				

Part– A

Basic Electrical Engineering Lab (Any 5 experiments)

List of experiments

- 1. Verification of Kirchhoff laws
- 2. Verification of Superposition Theorem
- 3. Magnetization characteristics of a DC Shunt Generator
- 4. Speed control of DC Shunt Motor
- 5. OC & SC test of 1 Phase Transformer
- 6. Load test on 1-Phase Transformer
- 7. Brake test on DC Shunt Motor
- 8. Measurement of Real & Reactive Power by single phase RL, RC circuits

<u>Part – B</u>

Basic Electronics Engineering Lab (Any 5 experiments)

List of Experiments

- 1. PN Junction diode characteristics A) Forward bias B) Reverse bias
- 2. Zener diode characteristics and Zener as voltage Regulator
- 3. Full Wave Rectifier with & without filter
- 4. Wave Shaping Circuits. (Clippers & Clampers)
- 5. Input & Output characteristics of Transistor in CB / CE configuration.
- 6. Frequency response of CE amplifier.
- 7. Inverting and Non-inverting amplifiers using Op-AMPs.

8. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.

9. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

B.Tech II SEM – CE (R20UG)

Course	Title	Differential Equations and Vector Calculus					B.Tech CE II Sem (R20)				
Course	Code	Category	Hou	ırs/W	eek	Credits	Maximum Marks				
20212	201	Basic Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		(BSC)	3 0 0 3 40					60	100		
	Mi	id Exam Du	ration	: 1.5 H	Irs		End Exa	m Duration	n: 3 Hrs		
Course	e Objectives:										
•] •] a	 To enlighten the learners in the concept of differential equations. To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications 										
Course	Outcor	mes: On succ	cessful	comp	letion	of this cour	rse, the students w	vill be able t	0		
CO 1	Classi	ify second ar	nd high	er ord	er line	er D.E's wit	h constant coeffic	cients.			
CO 2	Solve	partial differ	rential	equati	ons.						
CO 3	Analyze the applications of partial differential equations.										
CO 4	Understand vector differentiation concepts.										
CO 5	Apply	vector integ	gration	conce	pts.						

UNIT-I

Linear differential equations of higher order (constant coefficients): Definitions, homogeneous and non- homogeneous, complimentary function, general solution, particular integral, Wronskian, Method of variation of parameters.

<u>UNIT-II</u>

Partial Differential Equations: Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order equations using Lagrange's method.

<u>UNIT-III</u>

Applications of Partial Differential Equations: Classification of PDE, method of separation of variables for second order equations. Applications of Partial Differential Equations: One dimensional Wave equation.

<u>UNIT-IV</u>

Vector differentiation: Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, del applied to vector point functions-Divergence and Curl, vector identities.

UNIT-V

Vector integration: Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and applications of these theorems.

Text Books:

- 1. Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers-43 edition 2014.
- Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Publications, 9th edition- 2013
- Calculus and Analytic geometry, G.B. Thomas and R.L. Finney, Pearson, 9th Edition, Reprint, 2002.
- 4. Advanced Engineering Mathematics, Greenberg Michael D, Cengage Publishers.

- Higher Engineering Mathematics, B.V. Ramana, Mc. Graw Hill Education (India) Pvt. Ltd, New Delhi, 11th Edition, Reprint 2010.
- 2. A Text Book of Engineering Mathematics, N.P. Bali and Manish Goyal, Lakshmi Publications, Reprint 2008.
- 3. Applied Calculus, Hegarty John C
- 4. Advanced Calculus, Widder V David, Pearson Publishers.

Course T	itle	Engir	eering	g Cher	nistry		B.Tech (CE II Sem	(R20)		
Course C	ode	Category	Ho	urs/W	eek	Credits	Maxi	mum Mar	rks		
20EC2(02	Basic Science (BSC)	sic Science L T P C Continuous (BSC) L T P C Assessment En Assessment		End Exam	Total					
			3	0	0	3	40	60	100		
Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs											
Course O	bject	ives:									
• To	o familiarize engineering chemistry and its applications										
To To sui	 To impart the concept of soft and hard waters, softening methods of hard water To train the students on the principles and applications of electrochemistry, polymers, surface chemistry, and cement. 										
Course O	utcor	nes: On successf	ul com	pletior	n of thi	s course, tl	he students will	be able to			
CO 1	Evalu	ate the amount o	f hardr	ness an	nd disso	olved oxyg	en present in wa	ater sample	2.		
CO 2	Demo	onstrate the corro	sion pr	reventi	on me	thods and f	factors affecting	corrosion.	,		
CO 3	Explain the preparation, properties, and applications of thermoplastics & thermosetting,										
	Elastomers & conducting polymers										
CO 4	Understand the setting and hardening of cement and concrete phase.										
CO 5	Analy	yze the concepts	of colle	oids, n	nicelle	and nanon	naterials.				

<u>UNIT-I</u>

Water Technology: Introduction –Soft Water and hardness of water, hardness of water by EDTA Method, Estimation of dissolved oxygen (Winkler's method)-Boiler troubles –Priming, foaming, scale and sludge, Caustic embrittlment, Industrial water treatment – specifications for drinking water, Bureau of Indian Standards(BIS) and World health organization(WHO) standards, ion-exchange processes - desalination of brackish water, reverse osmosis (RO) and electro dialysis.

UNIT-II

Electrochemistry and Applications: Introduction to electrodes – concepts, electrochemical cell, Nernst equation, cell potential calculations.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteries- working of the batteries including cell reactions; Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Corrosion: Introduction to corrosion, electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion, metal oxide formation by dry electrochemical corrosion, Pilling Bed worth ratios and uses, Factors affecting the corrosion, Cathodic and anodic protection, electroplating and electro less plating (Nickel and Copper).

UNIT-III

Polymers and Fuel Chemistry: Introduction to polymers, Polymer dispersion index, functionality of monomers, Mechanism of chain growth, step growth and coordination polymerization.

Thermoplastics and Thermo-setting plastics-: Preparation, properties and applications of poly styrene. PVC and Bakelite

Elastomers – Preparation, properties and applications of Buna S, Buna N, Thiokol Fuels – Types of fuels, calorific value, numerical problems based on calorific value; Analysis of coal, Liquid Fuels refining of petroleum, fuels for IC engines, knocking and anti-knock agents, Octane and Cetane values, cracking of oils; alternative fuelspropane, methanol and ethanol, bio-fuels.

UNIT-IV

Advanced Engineering Materials: Refractories- Classification, Properties, Factors affecting the refractory materials and Applications.

Lubricants- Classification, Functions of lubricants, Mechanism, Properties of lubricating oils – Viscosity, Viscosity Index, Flash point, Fire point, Cloud point. Building materials- Portland cement, constituents, phases and reactivity of clinker, Setting and Hardening of cement.

<u>UNIT-V</u>

Surface Chemistry and Applications: Introduction to surface chemistry, colloids, micelle formation, synthesis of colloids (Dispersion method), chemical and electrochemical method (chemical vapour deposition) of preparation of nano metals

and metal oxides, stabilization of colloids and nanomaterials by stabilizing agents, applications of colloids and nanomaterials –medicine.

Text Books:

- 1. A textbook of Engineering chemistry by Shashi Chawla, Dhanpat Rai & Co publications
- 2. Text Book of Physical Chemistry, Samuel Glasstone, Mcmillian publications.
- Textbook of Polymer Science, Third Edition, Fred W. Billi Meyer, TR, A Wiley-Inter Science Publications.
- 4. An Introduction to Electrochemistry, Glasstone, Arihant Publications.

- 1. Textbook of Engineering Chemistry, Jain and Jain, DhanpatRai& Co publications, 2013
- 2. D.J. Shaw, Introduction to Colloids and Surface Chemistry, Butterworth-Heineman,1992.
- 3. Water Technology, 2nd Edition, N.F. Gray, Elsevier publications, 2005.
- 4. H.F.W. Taylor, Cement Chemistry, 2/e, Thomas Telford Publications, 1997.

Course '	Title	C Program	mmin	g & L)ata S	tructures	B.Tec	h CE II Se	m (R20)			
Course (Code	Category	Ho	urs/W	eek	Credits	Maximum Marks					
20052	03	Engineer ing Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		(ESC)	3	0	0	3	40 60 100					
	N	/lid Exam D	uratio	n: 1.5	Hrs		End Exam Duration: 3 Hrs					
Course (Course Objectives: The course aims to provide exposure to problem-solving through programming											
and to tra	ain the	student to th	e basic	conce	epts of	the C program	nming languag	e				
Gain kno	owledge	e of data stru	ctures	and th	eir app	olications.						
Course (Outcor	mes: On succ	cessful	compl	letion of	of this course,	, the students w	ill be able t	to			
CO 1	Form	ulate simple	algorit	hms fo	or arith	metic and log	gical problems a	and to trans	slate the			
	algori	ithms to prog	grams (in C L	anguag	ge)						
CO 2	Choo	se the loops a	and de	cision-	makin	g statements	to solve the pro	blem.				
CO 3	Implement different Operations on arrays.											
CO 4	Use functions to solve the given problem and Understand structures, unions and pointers.											
CO 5	Unde	rstand need of	of data	structu	ares in	real time situ	lations.					

<u>UNIT-I</u>

Introduction to C programming: C language elements, variable declarations and data types, operators and expressions, decision statements - If and switch statements, loop control statements - while, for, do-while statements. Jumping statements: break, continue and goto statements.

<u>UNIT – II</u>

Arrays: Introduction, Declaration and initialization of 1D and 2D arrays, Functions: types of functions, Recursion and argument passing, pointers, storage allocation, pointers to functions, expressions involving pointers, Storage classes – auto, register, static, extern. Strings: string handling functions, and Command line arguments.

<u>UNIT – III</u>

Pointers: Introduction to pointers, declaring and initialization of pointer variable, accessing the address of variables, accessing a variable through its pointer, chain of pointers. Structures and unions: Introduction, defining a structure, declaring structure variable, structure initialization, accessing members of structure, copying and comparing structure variables, structures within structures, array of structures, and introduction of union.

UNIT – IV

Data Structures: Overview of data structures, stacks and queues, representation of a stack, stack related terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix, prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion, searching operations.

Searching and sorting: linear search, binary search, bubble (exchange) sort, selection sort, insertion sort.

$\underline{UNIT} - \underline{V}$

Linked Lists – Single linked list, Operations on Single Linked List: insertion, deletion and searching operations, doubly linked lists and its operations, circular linked lists and its operations. **Trees -** Tree terminology, representation, Binary trees, representation, binary tree traversals. Binary tree operations.

Text Books:

- 1. E. Balagurusamy, C Programming and Data structures, Fourth Edition, McGrawHill.
- 2. Rema Theraja, Programming in C, second edition, Oxford.
- 3. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Computer Science Press.
- 4. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao, Pearson Education

- Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 2. R.G. Dromey, How to solve it by Computer, Pearson.
- 3. YashavantKanetkar, Let us C, 15th edition, BPBPublications.
- 4. Dr. P. ChennaReddy, Computer Fundamentals and C Programming, SecondEdition

Course Title	Strength of Materials					B.Tech CE II Sem (R20)			
Course Code	Category	Category Hours/Week Credits				Maximum Marks			
2001204	Engineer ing Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(ESC)	3	0	0	3	40	60	100	
Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs									
Course Objectives:									
• To make the students understand the effect of forces on rigid body & to calculate CG and moment of inertia of solids and surfaces.									
• To make students learn the basic concepts of strength of materials, elastic moduli and their relations and temperature stresses.									
• To impart procedure for drawing shear force and bending moment diagrams for determinate									

- To impart procedure for drawing shear force and bending moment diagrams for determinate beams.
- To make the student able to analyze flexural stresses in various sections due to different loads.
- To make the student able to analyze shear stresses in various sections due to different loads and analyze determinate trusses.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Understand the different types of forces systems and its effect on rigid bodies and to locate CG and moment of inertia of different geometrical shapes
CO 2	Understand the concepts of stress, strain, elastic moduli, stresses in composite bars and temperature stresses
CO 3	Develop shear force and bending moment diagrams of determinate beams for different loads.
CO 4	Compute the flexural stresses of different cross-sections under different loads.
CO 5	Compute and visualize the shear stresses variation across depth of sections under different loads.

<u>UNIT-I</u>

Introduction to Mechanics: Basic Concepts, system of Forces - Coplanar Concurrent Forces - Components in Space Resultant -Moment of Forces and its Application -Couples and Resultant of Force Systems. Equilibrium of system of Forces: Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial systems- Center of Gravity, Centroid and moment of inertia: Introduction – Center of gravity/centroid and Moment of Inertia of rectangular, circular, Triangular, I, L and T sections - built up sections.

<u>UNIT – II</u>

Simple Stresses and Strains: Types of stresses and strains – Hooke's law – Stress – strain diagram for mild steel – working stress – Factor of safety – lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of Varying section – Composite bars – Temperature stresses. Strain energy – Resilience – Gradual, Sudden, impact and shock loadings – simple applications.

<u>UNIT – III</u>

Shear Force and Bending Moment: Definition of beam – types of beams – types of supports – types of loads - Concept of Shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and over changing beams subjected to point loads, uniformly distributed load, uniformly varying loads and combination of these loads – point of contra flexure – Relation between S.F, B.M and rate of loading at a section of a beam.

<u>UNIT – IV</u>

Flexural Stresses: Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/Y = E/R – Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hallow), I, T, Angle and Channel Sections – Design of simple beam sections.

<u>UNIT – V</u>

Shear Stresses: Derivation of Formula-Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T and angle sections. Combined bending and shear.

Analysis of trusses by Method of Joints & Sections.

Text Books:

 S. Timoshenko, D.H. Young and J.V. Rao, "Engineering Mechanics", Tata McGraw-Hill Company.

- 2. E.P. Popov, "Mechanics of Materials", Hardcover, Prentice-Hall, 1958.
- 3. R.K. Rajput, "Strength of Materials", S.Chand Publishers.
- 4. R. K. Bansal, "Strength of Materials", Lakshmi Publications House Pvt. Ltd.

- 1. S.S. Bhavikatti, "Strength of materials", Vikas publishing house Pvt. Ltd.
- 2. R. Subramanian, "Strength of Materials", Oxford University Press.
- 3. F. L. Singer and A. Pytel, "Strength of materials", 4th edition, Longman, 1990
- 4. Stephen P. Timoshenko, History of Strength of Materials (Dover Civil and Mechanical Engineering), Dover Publications Inc.

Course Ti	le Engin	Engineering Workshop					B.Tech CE II Sem (R20)		
Course Co	de Category	Ho	Hours/Week Credits			Maximum Marks			
20EW20	Laboratory (LC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		0	0	3	1.5	40	60	100	
Mid Exam Duration: End Exam Duration: 3 Hrs									
Course Objectives: To familiarize students with									
• Sheet metal operations									
• Fitting									
• Electrical house wiring skills									
Wood working									
Course Outcomes: On successful completion of this course, the students will be able to									
CO 1	Apply wood working skills in real world applications								
CO 2 I	Build different objects with metal sheets in real world applications								
CO 3	Apply fitting operations in various applications.								
CO 4	Apply different types of basic electric circuit connections								
CO 5 U	Use soldering and brazing techniques.								

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints Half – Lap joint Mortise and Tenon joint Corner Dovetail joint or Bridle joint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises
Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

a) Parallel and series b) Two-way switch c) Go down lighting d) Tube light

e) Three phase motor f) Soldering of wires

Note: In each section a minimum of three exercises are to be carried out.

Course	e Title	IT W	orksh	op			B.Tech CE II Sem (R20)			
Course	Code	Category	Hours	s/W	eek	Credits	Maxi	mum Marks		
20052	206	Laboratory (LC)	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			0	0	3	1.5	40	60	100	
		Mid Exam Durati		End Exan	n Duration: 3	3 Hrs				
Course	Objecti	ves:								
• T d • T S • T	 To make the students know about the internal parts of a computer, assembling and dissembling a computer from the parts, preparing a computer for use by installing the operating system. To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations and LAteX. To learn about Networking of computers and use Internet facility for Browsing and Searching. 									
Course	Outcon	nes: On successful con	npletio	n of	this	course, the	e students will b	e able to		
CO 1	Disass	emble and Assemble	a Perso	nal	Com	puter and p	prepare the com	puter ready to	use	
CO 2	Prepare the Documents using Word processors and Prepare spread sheets for calculations using excel and also the documents using LAteX									
CO 3	Prepar	e Slide presentations	using th	ie pi	resen	tation tool				
CO 4	Interco	onnect two or more co	mputer	s fo	r info	ormation sl	haring			
CO 5	Access	s the Internet and Brow	wse it to	o ob	tain	the require	d information			

Preparing your Computer:

Task 1:

Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2:

Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods.

Task 3:

Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4:

Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet:

Task 5:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc. should be done by the student. The entire process has to be documented.

Task 6:

Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email.

They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating email account.

Task 7:

Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools:

Task 8:

Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered.

Task 9:

Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10:

Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet.

Task 11:

LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

- 1. Introduction to Computers, Peter Norton, McGraw Hill
- 2. MOS study guide for word, Excel, PowerPoint & Outlook Exams, Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH
- 6. Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Course	Title	Engine	ering	Chem	istry L	ab	B.Tech CE II Sem (R20)			
Course	Code	Category	He	ours/W	Veek	Credits	Maximum Marks			
20EC207		Basic Science (BSC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
			0	0	3	1.5	40	60	100	
Mid Exam Duration:End Exam Duration: 3 Hrs										
Course Objectives:										
•]	To verif	y the fundamenta	al con	cepts v	vith exp	periments.				
• 7	The stuc	lent will have exp	osure	e to var	rious ex	perimental	skills and hand	-on exper	ience which	
i	s very e	essential for an E	nginee	ering s	tudent.					
Course	Outcor	nes: On successf	ul con	npletic	on of the	is course, th	e students will	be able to)	
CO 1	Detern	nine the cell cons	stant a	and con	nductan	ce of soluti	ons by using co	onductome	eter & pH	
	meter									
CO 2	Synth	esis of advanced	polyn	ner ma	terials.					
CO 3	Comp	are the physical p	proper	ties lik	ke adsor	rption and v	viscosity.			
CO 4	Evalu	ate the Iron and C	Calciu	m in c	ement.					
CO 5	Estim	ate the hardness a	& diss	olved	oxygen	content in	water.			

Note: In the following list, out of 12 experiments, any 8 experiments must be performed in a semester

List of Experiments:

- 1. Determination of Hardness of a groundwater sample.
- 2. Estimation of dissolved oxygen by Winkler's method
- 3. pH metric titration of strong acid vs. strong base.
- 4. pH metric titration of weak acid vs. strong base
- 5. Determination of cell constant and conductance of solutions
- 6. Potentiometry determination of redox potentials and emfs
- 7. Determination of Strength of an acid in Pb-Acid battery
- 8. Preparation of a polymer (Bakelite).
- 9. Determination of percentage of Iron in Cement sample by colorimetry
- 10. Estimation of Calcium in port land Cement
- 11. Preparation of nanomaterials by precipitation.
- 12. Adsorption of acetic acid by charcoal
- 13. Determination of percentage Moisture content in a coal sample
- 14. Determination of Viscosity of lubricating oil by Redwood Viscometer 1.

15. Determination of Viscosity of lubricating oil by Redwood Viscometer 2.

Text Books:

- 1. Vogel's Text book of Quantitative Chemical Analysis, J. Mendham et.al., Pearson Education, Sixth Edition, 2012.
- Laboratory manual on Engineering Chemistry, Anupama Rajput, Dhanpat Rai& Co Publications.
- Essentials of Experimental Engineering Chemistry, Shashi Chawla, Dhanpat Rai& Co Publications.

- 1. Practical Engineering Chemistry by K. Mukkanti, etal, B.S. Publications, Hyderabad.
- 2. Instrumental methods of chemical analysis, Chatwal, Anand, Himalaya Publications.
- 3. Essentials of Physical Chemistry, Bhal & Tuli. (S. Chand Publications).
- 4. Advanced Inorganic Analysis, Agarwal & Keemtilal (Pragati prakashan)

Course	Title	C Pro S	gran truc	nmin tures	g & I Lab	Data	B.Teo	ch CE II Sen	n (R20)
Course	Code	Category	Ho	urs/V	Veek	Credits	Maximum Marks		
2005	208	Engineer ing Science	neer g L T P nce		С	ContinuousEndInternalExamAssessmentExam		Total	
		(ESC)	0	0	3	1.5	40	60	100
	Mid Exam Duration: End Exam Duration: 3 Hrs								n: 3 Hrs
Course	Object	tives:							
• ′	• To know how to write and debug programs.								
• ′	• To know the principles of designing structured programs								
• ′	To Wri	te basic C pro	ogram	is usir	ig, Sele	ection state	ments, Repetitiv	e statements	
• ′	To unde	erstand Funct	ions,	Point	ers, Ar	rays, String	s and structures		
• ′	To appl	y suitable da	ta stri	icture	to solv	ve real worl	d problems		
Course	Outco	mes: On succ	essfu	l com	pletion	n of this cou	rse, the student	s will be able	to
CO 1	Formu	late the algor	rithms	s for s	imple	problems, 7	Translate given a	algorithms to	a working and
	correc	t program.							
CO 2	Correc	et syntax erro	rs as i	report	ed by t	the compile	rs, Identify and	correct logica	al errors
	encour	ntered at runt	ime.						
CO 3	Write	iterative as w	ell as	recur	sive p	rograms.			
CO 4	Repres	sent data in a	rrays,	string	gs and	structures a	nd manipulate t	hem through	a program.
CO 5	Write	programs on	data s	structu	ıres lik	e stack, qu	eue, liked list, tr	ees etc.	

1. Ramesh 's basic salary is input through the keyboard. His dearness allowance is 40% of basic salary and house rent allowance is 20% of basic salary. Write a C program to calculate his gross salary.

2. Write a program to take input of name, roll no and marks obtained by a student in 5 subjects each have its 100 full marks and display the name, roll no with percentage score secured.

3. a) Write a C program to find out whether a given number is even number or odd number.

b) Write a C program to check whether a given year is leap year or not.

4. Design and develop an algorithm that takes three coefficients (a, b, and c) of a Quadratic equation $(ax^2+bx+c=0)$ as input and compute all possible roots. Implement a

C program for the developed algorithm and execute the same to output the possible roots for a given set of coefficients with appropriate messages.

5. If the ages of the Ramesh, Suresh and Mahesh are input through the keyboard, write a C program to determine youngest of the three.

6. A character is entered through keyboard. Write a C program to determine whether the character entered is a capital letter, a small case letter, a digit or a special symbol using if- else and switch case. The following table shows the range of ASCII values for various characters.

Characters	ASCII values
A–Z	65 - 90
a– z	97 – 122
0-9	48 - 57
Special symbols	0 - 47, 58 - 64, 91 - 96, 123 - 127.

7. Write a C program which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use switch statement).

8. Design and develop an algorithm to find whether a given number is Armstrong number or not. Implement a C program for the developed algorithm.

9. Design and develop an algorithm to check whether a given number is palindrome or not. Implement a C program for the same.

10. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

11. Write a C program to generate the first N terms of Fibonacci sequence.

12. Write a C program to find the smallest and largest number in a given array.

13. Write a C program to find the frequency of a particular number in a list of integers.

14. Write a C program to sort the list of elements using

a) Bubble Sort b) Selection sort.

15. Write a C program to search for an element in a list of elements using

a) Linear search b) Binary search

16. Write a C program to read two matrices and perform the following operations

a) Addition of two matrices

b) Multiplication of two matrices

17. Partitioning an array

Given a randomly ordered array of n elements, write a C program to partition the elements into two subsets such that elements $\leq X$ are in one subset and elements $\geq X$ are in another subset.

18. Write a C program to rearrange the elements in an array so that they appear in reverse order.

19. If a string and its reversed string are same then the string is called as palindrome string. Design and develop an algorithm to check whether a given string is a palindrome or not and implement a C program for the same.

20. Write a C program to read two strings and perform the following operations without using built string library functions.

i) String length ii) String reversing

iii) Comparison of two strings iv) Concatenation of two strings

21. Write a C program to count the number of vowels, consonants, digits, blank space sand special characters in a given string.

22. Write a C program to swap the contents of two variables using a) Call by value

b) Call by reference.

23. Write a C program using recursion to

- a) Find the factorial of a given number
- b) Print the Fibonacci series up to a given number.
- c) Find the GCD of two integers.

24. Write a C program to define a structure with the following members.

Roll No., Name, marks in Sub1, Sub2, Sub3. Read the n students records and find the total marks of each student and print the result in the following format.

Roll No.	Name	Sub1	Sub2	Sub3	Total marks	Result
239Y1A0501	Siva	80	70	75	225	Distinction

25. Write C programs that implement stack (its operations) using

i) Arrays

ii) Pointers

26. Write C programs that implement Queue (its operations) using

i) Arrays

ii) Pointers

27. Write a C program that uses Stack operations to perform the following:

i) Converting infix expression into postfix expression

ii) Evaluating the postfix expression

28. Write a C program that uses functions to perform the following operations on single linked list.

i) Creation

ii) Insertion

- iii) Deletion
- iv) Traversal

29. Write a C program that uses functions to perform the following operations on Double linked list.

- i) Creation
- ii) Insertion
- iii) Deletion
- iv) Traversal
- 30. Write a C program that uses functions to perform the following:
- i) Creating a Binary Tree of integers
- ii) Traversing the above binary tree in preorder, inorder and postorder.

Text Books:

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A.Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg& Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011
- 4. E. Balagurusamy, Programming in ANSI C, Fifth Edition, McGrawHill.

Course Title	Stren	gth of	Mate	rials]	Lab	B.Tech CE II Sem (R20)			
Course Code	Category	Ho	urs/We	eek	Credits	Maximum Marks			
2001209	Engineeri ng Science (ESC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		0	0	3	1.5	40	60	100	
	Mid Exam	Durati	End Exa	am Duration	: 3 Hrs				

Course Objectives:

- To enhance the knowledge of students on stress at a point under tension, compression and shear.
- To enable students, understand the energy absorption capacity of the springs.
- To enable student to assess hardness of various metals.
- To enable students, distinguish between sagging and hogging deflections of different beams under loading conditions.
- To give light on basic mechanical properties of materials used in engineering practice.

Course Outcomes: On successful completion of this course, the students will be able toCO 1Visualize the stress-strain relationships for MS bas/HYSD barCO 2Analyse the compressive and shear strength properties of wood/concrete and metalCO 3Determine the stiffness of the spring and bar elementCO 4Deflection of various metallic beams under point load condition(s)CO 5Compute Hardness Number and impact strength of different metals

List of Experiments

- 1. Tension test on HYSD bar.
- 2. Bending test on (Steel/Wood) Cantilever beam.
- 3. Bending test on a simply supported beam.
- 4. Torsion test on mild steel specimen.
- 5. Hardness test on metals.
- 6. Compression test on Open coiled springs
- 7. Tension test on Closely coiled springs
- 8. Compression test on wood/concrete
- 9. Izod / Charpy Impact test on a mild steel specimen
- 10. Shear test on a mild steel specimen

List of Augmented Experiments:

- 1. Continuous beam–deflection test.
- 2. Verification of Maxwell's reciprocal theorem.

- 1. R.K. Rajput, "Strength of Materials", S. Chand Publishers.
- 2. R. Subrahmanyam, "Strength of materials", Oxford university press

Course Title	Envi	ronm	ental S	Science	e	B.Tech CE II Sem (R20)			
Course Code	Category	Ho	urs/W	eek	Credits	Max	Maximum Marks		
20MC210	Mandatory (MC)	L	Т	Р	С	ContinuousEndInternalExamAssessmentExam		Total	
		3	0	0	0	40			
Mid Exam Duration: 1.5 Hrs End Exam Duration:									
Course Object	Course Objectives:								
• To make the students to get awareness on environment.									
• To und	• To understand the importance of protecting natural resources, ecosystems for future								
generat	ions and pollutic	n cau	ses due	e to the	e day to day	activities of hur	nan life.		
To save	e earth from the i	nvent	ions by	the er	ngineers.				
Course Outco	mes: On succes	sful co	omplet	ion of	this course	e, the students v	vill be abl	e to	
CO 1 Expla	ain multidiscip	linary	natur	e of	environme	ntal studies ar	nd various	s Renewable	
and N	Ionrenewable res	source	es.						
CO 2 Unde	rstand the Ener	gy flo	w, bio-	-geo cł	nemical cyc	les and ecologic	al pyramic	ls	
CO 3 Illust	rate various cau	ses of	pollut	ion and	d related pro	eventive measur	es.		
CO 4 Sum	marize Solid w	aste 1	manage	ement,	Social iss	ues related to	environme	ent and their	
prote	ction acts.		U	,					
CO 5 Evalu	nate Causes of p	opulat	tion ex	plosio	n, value edu	cation and welf	are program	mmes.	

<u>UNIT – I</u>

Multidisciplinary Nature Of Environmental Studies: -Scope and Importance -

Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources – Natural resources and associated problems

Forest resources: deforestation, case studies – Mining, dams and other effects on forest and tribal people

Water resources: Use and over utilization of surface and ground water conflicts over water. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.

Energy resources: Renewable & Non-Renewable.

<u>UNIT – II</u>

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Food

chains, food web- Ecological succession and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- **b.** Desert ecosystem
- **c.** Aquatic ecosystems (lakes, rivers and oceans)

Biodiversity And Its Conservation : Introduction, Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global levels – India as a mega-diversity nation – Hot-spots of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

<u>UNIT – III</u>

Environmental Pollution: Definition, Cause, effects and control measures of:

- a. Air Pollution.
- **b.** Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

<u>UNIT – IV</u>

Social Issues and The Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, its problems and concerns. Case studies – Environmental ethics: Issues

and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents. Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act.

<u>UNIT – V</u>

Human Population and The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc.

Text Books:

- 1. Text book of Environmental Studies for Undergraduate Courses, Erach Bharucha for University Grants Commission, Universities Press.
- Fundamental Concepts of Environmental Chemistry- Sodhi G S Oxford University
- 3. Environmental Chemistry- Anil Kumar De-Willey Publications
- 4. Environment Impact Assessment- Larry W. Canter- Mc Graw Hill publications

- 1. G. R. Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 2. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.
- 3. Environmental Science, A Global Concerns, William P. Cunningham, Mary Ann Cunningham, Mc Graw Hill publications.
- 4. Environmental Science & Engineering, Glynn Henry J, Heinke Gary w, Pearson publications.

B.Tech III SEM - CE (R20UG)

Probal Nun	bility neric	y, Sta al M	tisti etho	cs & ds	B.Tech CE III Sem (R20)			
Category	Ηοι	ırs/W	eek	Credits	Maximum Marks			
Basic Science (BSC)	L	Т	Р	С	Continuous Internal Assessment	End Exam Total		
	3	0	0	3	40	60	100	
l Exam Dur	ation	End Exam Duration: 3 Hrs						
	Proba Nun Category Basic Science (BSC)	Probability Numeric Category Hou Basic Science (BSC) 1 L Exam Duration	Probability, Sta Numerical M Category Hours/W Basic Science (BSC) 1 C Exam Duration: 1.5	Probability, Statisti Numerical Metho Category Hours/Week Basic (BSC) L T P (BSC) 3 0 0 Exam Duration: 1.5 Hrs	Probability, Statistics & Numerical Methods Category Hours/Week Credits Basic Science (BSC) 1 P C 3 0 0 3 Exam Duration: 1.5 Hrs	Probability, Statistics & Numerical MethodsB.Tech CE IICategoryHours/WeekCreditsMaximuBasic Science (BSC)LTPContinuous Internal AssessmentBasic Science (BSC)J00340ISummaryEnd Exam Du	Probability, Statistics & Numerical MethodsB.Tech CE III Sem (R B.Tech CE III Sem (R CategoryCategoryHours/WeekCreditsMaximum MarksBasic Science (BSC)LTPContinuous Internal AssessmentEnd ExamBasic Science (BSC)J0034060I Exam Duration: 1.5 HrsEnd Exam Duration: 3End Exam Duration: 3	

Course Objectives:

- The objective of this course is to familiarize the students' knowledge in basic concepts and few techniques in probability and statistics in relation to the engineering applications.
- Also, to impart with numerical methods of solving the non-linear equations and interpolation.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Apply discrete and continuous probability distributions.
CO 2	Infer the statistical inferential methods based on large sampling tests.
CO 3	Infer the statistical inferential methods based on small sampling tests.
CO 4	Determine the roots of polynomial and transcendental equations by different methods.
CO 5	Estimate an unknown quantity by using related known values.

UNIT-I

Probability: Explaining basic concepts of Random variables (Without Problems)

Probability distributions: Binomial - Poisson approximation to the binomial distribution and normal distribution-their properties.

UNIT-II

Testing of Hypothesis: Formulation of null hypothesis, critical regions, level of significance. Large sample tests. Tests based on normal distribution -z -test for means and proportions.

<u>UNIT-III</u>

Small Sample Tests: t-test for one sample, two samples problem and paired t-test, F-test - Chi-square test (testing of goodness of fit and independence).

UNIT-IV

Solution of algebraic and transcendental equations: Bisection method – False - position method – Newton - Raphson method.

Solution of System of equations: Jacobi's iteration method – Gauss- Seidel iteration method.

UNIT-V

Interpolation: Finite differences - Forward differences - Backward differences - Newton's forward and backward difference formulae for interpolation - Lagrange's formula for unequal intervals- Inverse interpolation.

Text Books:

- 1. Higher Engineering Mathematics, B. S. Grewal, 44/e, Khanna Publishers, 2017.
- 2. Probability & Statistics for Engineers & Scientists, Walpole, Myers, Myers, Ye, Seventh Edition, Pearson Education Asia.
- 3. Applied Numerical Analysis, Curtis F.Gerald, Patrick O.Wheatley, Seventh Edition, Pearson Education.
- 4. Numerical Methods, P. Kandasamy, K. Thilagavathy, K. Gunavathi, S. Chand & Company, 2/e, Reprint 2012.

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Publications, 9th edition- 2013.
- 2. A text book of Engineering Mathematics, N.P. Bali and Manish Goyal,Laxmi Publications, Reprint, 2010.
- 3. Numerical Methods, S Arumugam, A.Thangapandi Issac, A Somasundaram SCITECH Publishers, Second edition Reprint 2013.
- 4. Probability and Statistics for Engineers, Johnson, Fifth edition, Prentice Hall of India.

Course 7	Fitle	Geology and	d Bu	ildin	g ma	aterials	B.Tech CE I	II Sem (l	R20)
Cours Code	se e	Category	Hou	rs/W	eek	Credits	Maximu	m Marks	\$
2001302		Engineering Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		(ESC)	3	0	1	3.5	40	60	100
Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs								3 Hrs	
Course (Objecti	ives:							
• T	• To give the basics knowledge of Geology that is required for constructing various								
C	Civil Engineering Structures, basic Geology.								
• T	he abil	ity to know the	e wea	therin	ig pro	ocedure of	rocks.		
• T	he abil	ity to understa	nd Er	nginee	ering	properties	of Rocks and the	ir Minera	ıls.
• T	'o study	y the Engineer	ing Pr	opert	ies of	f Building	materials.		
• T	o study	y the modern E	Ingine	ering	mate	erials used	in construction.		
Course (Jutcon	nes: On succes	ssful o	compl	etior	of this co	urse, the students	will be a	uble to
CO 1	Under	rstand the geol	logica	l stru	cture	s and weat	thering of Rocks.		
CO 2	Class	ify the mineral	ls and	sum	naris	e the engin	neering properties	of Rock	s.
CO 3	Study	the various r	ohysic	al an	d en	gineering	properties of basi	ic materia	als used
	for co	for construction.							
CO 4	Under	rstand the uses	and	practi	cal a	pplication	of roofing and Fle	ooring m	aterials.
CO 5	Know	v the various	mod	ern b	uildi	ng materi	als and its appli	ications	in Civil
	Engin	neering domair	ı.						

<u>UNIT – I</u>

Introduction: Branches of Geology, Importance of Geology in Civil Engineering with case studies. **Structural Geology:** Strike, Dip and Outcrop study of common geological structures associating with the rocks such as Folds, Faults, Joints and Unconformities-parts, types, mechanism, and their importance in Civil Engineering. **Weathering:** Weathering of rocks, Geological agents, weathering process of Rock, Rivers, and geological work of rivers.

UNIT-II

Mineralogy: Definition of mineral; Significance of different physical properties of minerals. Study of Common rock forming minerals and their identification; Clay minerals, Study of common economic minerals –Hematite, Magnetite, Galena. Graphite, Bauxite, Coal.

Petrology: Definition of rock: Geological classification of rocks.Study of different group of minerals, physical properties and their identification.

Engineering Properties of Rocks: Different Engineering properties of rocks. Study of common Rocks – Granite - Basalt – Dolerite – Pegmatite – Sandstone – Limestone – Shale – Laterite - Granite gneiss – schist – Marble - quartzite – khondalite – Charnockite.Study of identification of rocks (Igneous, sedimentary and metamorphic rocks) and structural geology problems. Study of topographical features from geological maps.

<u>UNIT – III</u>

Introduction: Physical, chemical, and engineering properties of building materials. Application of building materials. **Bricks:** Types of bricks, manufacturing process of bricks, Test on bricks, Standard requirements, and grades of bricks as per BIS. **Cement:** Types of cement with their specific use, Grade of cement as per BIS, Engineering properties of cement, Field, and laboratory test of cement as per BIS, Methods of storing the cement. **Lime and pozzolan:** Sources and classification of Lime, Uses of lime with specific field situation, Types of pozzolanic materials, Advantages of addition of pozzolanic material. **Timber:** Types of timber, Uses and application of timber, Defects in timber and wood, Seasoning, Wood products with specific uses.

<u>UNIT – IV</u>

Roofing Material: Structural Steel and Aluminium – Roofing Material - Physical description of asbestos sheets, GI sheets, tubes, and light weight roofing materials.

Flooring Materials: Functional requirement of flooring, types of floor finishes, Types of flooring: timber flooring, cement concrete flooring, mosaic flooring, ceramic flooring, terrazzo flooring, tiled flooring, rubber flooring, epoxy asphalt flooring. Industrial flooring: Vacuum Dewatered Flooring – Bitumen – forms of bitumen - functions of bituminous materials – Tests for bituminous materials.

<u>UNIT – V</u>

Modern Building Materials: Fibre glass reinforced plastic – Clay products –Refractories – Composite materials – Types – Applications of laminar composites – Fibre Textiles – Geosynthetics for Civil Engineering applications -Recycling of Industrial waste as building material - Polymers in Civil Engineering.

Text Books:

- Engineering Geology by N. Chennakesavulu, Laxmi publications, 2nd Edition, 2016.
- Engineering Geology by D. Venkat Reddy, Vikas Publishing House Pvt. Ltd., 2017.
- 3. Parbin Singh, Engineering and General Geology, Katson Publication House, 1987.
- 4. Krynine and Judd, Engineering Geology and Geotechniques, McGraw Hill Book Company,New Delhi, 1990.

Reference Books:

- 1. F.G. Bell, Fundamentals of Engineering Geology, Butterworth-Heinemann, Kindle Edition, 2016.
- 2. Legeet, Geology and Engineering, McGraw Hill Book Company, New Delhi 1998.
- Bangar, K.M., Principles of Engineering Geology, Standard Publishers & Distributors,

New Delhi, 2nd Edition, 2007.

4. Engineering Geology for Civil Engineers – P.C. Varghese PHI, 2012.

Course Title	Advanced S	treng	gth of	f Ma	aterials	B.Tech CE I	II Sem (R20)
Course Code	Category	Hours/Week			Credits	Maximum Marks		
2001303	Professional Core (PCC)	L	Т	P	С	Continuous Internal Assessment	End Exam	Total
		3	0	1	4	40	60	100
Ι	Mid Exam Dura	End Exam Duration: 3 Hrs						

Course Objectives:

Objective of this course is to make the students

- To understand calculation of deflection of beams under different loading conditions
- To understand the basic torsion concepts behind the shafts design and engineering knowledge behind the springs.
- To understand the stress at a point due to uniaxial and by-axial loading on a member and theory of failures from energy theories.
- To understand the fundamentals of Euler's theorem for columns and critical load carrying capacity of columns.
- To understand stresses in closed cylinders and design of thin and thick cylinders.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Use double integration and Macaulay's methods to calculate deflection of
	beams.
CO 2	Apply torsion theory for design of shafts and springs.
CO 3	Estimate the principal stresses and principal strains in a body.
CO 4	Calculate load carrying capacity of short columns and long columns using
	Euler's and Rankin's theorem.
CO 5	Find the stresses and strains in thin cylinders and application of Lame's
	theorem for thick cylinders.

<u>UNIT – I</u>

Deflection of Beams: Slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay's methods – Determination of slope and deflection for cantilever and simply supported beams

subjected to point loads, U.D.L, uniformly varying load and couple -Mohr's theorems – Moment area method – Application to simple cases.

<u>UNIT – II</u>

Torsion: Theory of pure torsion, Torsional equation, Torsional moment of resistance, Polar section modulus, Power transmitted by shafts; combined bending, torsion and end thrust; Design of shafts.

Springs: Deflection of close and open coiled helical springs under axial load and axial twist, Springs in series and parallel.

<u>UNIT – III</u>

Principal Stresses and Strains: Stresses on an inclined plane under axial loading, Compound stresses, Normal and tangential stresses on an inclined plane for biaxial stresses, two perpendicular normal stresses accompanied by a state of simple shear, Mohr's circle of stresses, Triaxial state of stresses, Principal stresses and strains.

Theories of Failure: Maximum principal stress theory, Maximum principal strain theory, Maximum shear stress theory, Maximum strain energy theory, Maximum shear strain energy theory.

$\underline{UNIT-IV}$

Columns and Struts: Short, medium and long columns, axially loaded compression members, Euler's theorem for long columns, Euler's critical load, Equivalent length of a column, Slenderness ratio, Limitations of Euler's theory, Rankine–Gordon formula, long columns subjected to eccentric loading.

UNIT-V

Thin Cylinders: Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and volumetric strains – changes in diameter and volume of thin cylinders – thin spherical shells.

Thick Cylinders: Introduction - Lame's theory for thick cylinders – Derivation of Lame's formulae – distribution of hoop and radial stresses across thickness – design of thick cylinders – compound cylinders – Necessary difference of radii for shrinkage.

Text Books:

- Punmia, B. C., Ashok Kumar Jain and Arun Kumar Jain, Mechanics of Materials, Laxmi Publications Pvt. Ltd., 2001.
- 2. Bhavikatti, S. S., Strength of Materials, Vikas Publishing House, 3rd Edition, 2010.
- 3. Strength of Materials by R. Subramanian, Oxford University Press
- 4. Strength of Materials by B.S.Basavarajaiah and P. Mahadevappa, 3rd Edition, Universities Press

- Rajput, R. K., Strength of Materials (Mechanics of Solids), S. Chand & Company LTD, 5th Edition, 2006.
- 2. Basu, A. R., Strength of Materials, Dhanpat Rai & Co. (P) Ltd., 2nd Revised Edition, 2015.
- Junnarkar, S. B. and Shah, H. J., Mechanics of Structures Vol. I (Strength of Materials), Charotar Publishing House Pvt. Ltd., 27th Revised and Enlarged Edition, 2008.
- 4. Khurmi, R. S., Strength of Materials, S. Chand & Company Ltd., 23rd Edition, 2005.

Cours Title	e Flui	Fluid Mechanics				B.Tech CE III Sem (R20)				
Cours Code	Category	Hours/Week Credits			Credits	Maximum Marks				
20013)4 Professional Core	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(PCC)	3	0	0	3	40	60	100		
	Mid Exam Duration: 1.5 Hrs			End Exam Du	ration:	3 Hrs				
Course	Objectives:					l				
 To develop a basic understanding about the properties of fluids and the applications of fluid mechanics. To formulate and analyse the problems related to calculation of forces in fluid structure interaction. To understand the concept of fluid measurement, types of flows. To enable the students to apply the basic principles of fluid mechanics on pipe flow network. To demonstrate the flow under laminar and turbulent, analyze the model studies of fluid flow problems. 										
CO	Describe the sign	ifica	nce d	of flu	id proper	ties, measure the	ne press	ure and		
CO	Know the basics of	e and f fluio	d kine	yze fo matio	cs, dynami	ics and understa	nd and a	pply the		
2	Bernoulli principle	•			, ,					
	Know the applicat	Know the applications of Bernoulli's equation in devices like venturimeter,								
CO	Categorize fluid fl	$\frac{0 \le 1}{0 \le 1}$	noug	h pipe	es in series	s, parallel and pip	e networ	ks.		
4	caregorize find flow unough pipes in series, paranet and pipe networks.									
CO 5	Analyze the pipe network under laminar and turbulent and demonstrate									
3	model studies for fluid flow problems.									

<u>UNIT-I</u>

Properties of Fluid: Distinction between a fluid and a solid, Density, Specific weight,Specific gravity, Kinematic and dynamic viscosity; variation of viscosity withtemperature,Newtonlawof viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity,Bulk modulus of elasticity, compressibility.

Fluid Statics: Fluid Pressure: Pressure at a point, Pascals law, pressure variation with temperature, density and altitude. Piezometer, U-Tube manometer, single column manometer, U-Tube differential manometer, Micromanometers, pressure gauges. Hydrostatic pressure and force: horizontal, vertical and inclined surfaces. Buoyancy and stability of floating bodies.

<u>UNIT – II</u>

Fluid Kinematics: Classification of fluid flow - Steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one,two and three dimensional flows; stream line, path line, streak line and stream tube; stream function, velocity potential function. One,two and three dimensional continuity equations in Cartesian-oordinates.

Fluid Dynamics: Surface and body forces - Euler's and Bernoulli's equation; Energy correction factor; Momentum equation. Vortex flow – Free and Forced. Bernoulli's equation to real fluid flows.

<u>UNIT – III</u>

Flow Measurement in Pipes: Practical applications of Bernoulli's equation: venturimeter, orifice meter and pitot tube; Momentum principle; Forces exerted by fluid flowonpipebend.Flow Over Notches & Weirs: Flow through rectangular; triangular and trapezoidal

notches and weirs; End contractions; Velocity of approach. Broad crested weir.

$\underline{UNIT} - IV$

Analysis of pipe flow: Reynolds experiment, Reynolds number, loss of head through pipes, Darcy-Wiesbach equation, minor losses, total energy line, hydraulic grade line, pipes in series, equivalent pipes, pipes in parallel, siphon, branching of pipes, three reservoir problem, power transmission through pipes. Analysis of pipe networks: Hazen-Williams formula, Hardy Cross method, water hammer in pipes and control measures.

<u>UNIT – V</u>

Laminar Flow and Turbulent Flows: Reynold's experiment – Characteristics of Laminar & Turbulent flows, Shear and velocity distributions, Laws of Fluid friction, Hagen-Poiseulle Formula, Flow between parallel plates, Flow through long tubes, hydrodynamically smooth and rough flows.

Hydraulic Similitude: Dimensional analysis - Rayleigh's method and Buckingham's pi theorem - Model studies – Geometric, kinematic and dynamic similarities - Dimensionless numbers – Model laws – Scale effects.

Text Books:

- 1. Fluid Mechanics by Modi and Seth, Standard Book House, 20th edition 2018.
- 2. Fluid Mechanics and Hydraulic Machines by Manish Kumar Goyal, PHI learning

Private Limited, 2015, Kindle edition 2015.

- Fluid Mechanics by R.C.Hibbeler, Pearson India Education Services Pvt. Ltd, 2ndedition 2016.
- Fluid Mechanics and Hydraulilc Machines, R.K. Bansal, Laxmi Publication Pvt Ltd.

9th edition 2016.

- Theory and Applications of Fluid Mechanics, K. Subramanya, Tata McGraw Hill, 1993, First edition.
- Introduction to Fluid Mechanics and Fluid Machines by S K Som, Gautam Biswas, Suman Chakraborthy, Mc Graw Hill Education (India) Pvt. Limited, 3rd Edition, 2016.
- 3. Fluid Mechanics and Machinery, C.S.P.Ojha, R. Berndtsson and P. N. Chadramouli, Oxford University Press, 2010, First edition.
- Fluid mechanics & Hydraulic Machines, Domkundwar&DomkundwarDhanpat Rai & Co, 9th edition 2015.

Course Title	(Geom	atics	B.Tech CE III Sem (R20)				
Course Code	Category	Hours/Week Credits				Maximum Marks		
2001305	Professional Core	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
	(PCC)	3	0	0	3	40	60	100
Γ	Mid Exam Dura	End Exam Du	ration: 3	Hrs				

Course Objectives:

- Improve the knowledge working principles of survey instruments.
- Perform field work for plane table and levels by levelling instrument for prepare maps with levels.
- Perform traverse calculations, horizontal and vertical positions and angles through Theodolite surveying and Tacheometric surveying.
- To evaluate areas and volumes of earth work and setting of curves.
- To describe the modern surveying tools are usage by EDM and drone surveying.

Course Outcomes:	On successful	completion	of this course,	the students	will be able to
-------------------------	---------------	------------	-----------------	--------------	-----------------

CO	Compute linear and areal measurements by using chain and compass.
1	
CO	Gain the knowledge on levelling and contouring techniques and its applications.
2	
CO	Understand the basics on linear and angular measurements with the help of
3	Theodolite and Tacheometer.
CO	Compute areas and volumes of a field for different practical conditions and curve
4	setting.
CO	Apply the modern surveying techniques for various field problems.
5	

<u>UNIT - I</u>

Introduction: Introduction, Objectives, classification and principles of surveying.

Chain Surveying: Principles of Chain Surveying, Chaining, Type of chains, Recording the measurement, Offsets and their types, Number of offsets, Computation of areas, Errors in lengths due to incorrect chain, Correction for slopes, Error in chaining with tape and corrections, Numerical on chain and tape corrections

Compass Surveying: Types of compass, Bearings, Included angles, Errors and adjustments.

<u>UNIT – II</u>

Plane Table Surveying: Equipment, Methods of plane tabling, Errors, Two- and threepoint problems.

Levelling and Contouring: Types of levelling, Types of levelling instruments, Temporary and permanent adjustments, Height of instrument and rise and fall methods, Plotting longitudinal sections and cross sections, Effect of curvature and refraction, Characteristics of contours, Uses of contour maps.

<u>UNIT – III</u>

Theodolite Surveying: Description of theodolite, Temporary and permanent adjustments of vernier transit, Measurement of horizontal and vertical angles, Heights and distances, Traversing, closing error and distribution, Gale's traverse table, omitted measurements.

Tacheometric Surveying: Principle of stadia method, Distance and elevation formulae for staff held vertical and normal, Instrumental constants, Analytic lens, Tangential method.

$\underline{UNIT} - IV$

Computation of Areas: Areas dividing into number of triangles, By offsets to a base line, By coordinates, Areas from maps.

Computation of Volumes: Volume from cross-section, Embankments and cutting for a level section and two-level sections with and without transverse slopes, Determination of the capacity of reservoir.

Route surveying – Curves: Curves - Types - Elements of a curve - Simple curves - Setting out of curves using various methods – Geometry of compound curves and reverse curves – Introduction to transition and vertical curves.

UNIT - V

Electromagnetic distance measurement (EDM) – Principle of EDM, Modulation, Types of EDM instruments, Distomat.

Total Station – Parts of a Total Station – Accessories – Advantages and Applications, Introduction to Astronomical terms, Field Procedure for total station survey, Errors in Total Station Survey

Drone Surveying: Working principle, Benefits of drones in surveying, Applications, Interior and exterior drone surveying, Calculation of length, area and stockpile volume.

Text Books:

- B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, Surveying Vol. I, II and III, Laxmi Publications (P) Ltd., 17th Edition, 2016.
- 2. R. Subramanian, Surveying and Levelling, Oxford University Press, 2nd Edition, 2012.
- 3. Chandra, A.M, Plane Surveying, 2nd Edition, New Age International Publishers, New Delhi, 2010.
- Surveying (Vol 1, 2 & 3), by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain Laxmi Publications (P) ltd., New Delhi.

- S. K. Duggal, Surveying Vol. I and II, Tata McGraw–Hill Publishing Co. Ltd., 4th Edition, 2013.
- Arthur R. Benton and Philip J. Taetz, Elements of Plane Surveying, McGraw-Hill, 3rd Edition,2010.
- 3. Arora, K. R., Surveying Vol. I and II, Standard Book House, 14th Edition, 2011.
- 4. T. P. Kanetkar and S. V. Kulkarrni, Surveying and Levelling, Pune Vidyarthi Griha Prakashan, Pune, 24th Edition, 2013

Cou Tit	rse le	Fluid Mechanics Laboratory					B.Tech CE III Sem (R20)				
Cour Coc	rse le	Category	Hou	rs/Wee	k	Credits	Maximum Marks				
2001.	306	Professional Core	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		(FCC)	0	0	3	1.5	40	60	100		
	N	Aid Exam Dura	tion:	1.5 Hr	S		End Exam Duration: 3 Hrs				
Cours	e Obj	jectives:									
•	To io beha	dentify the beha vior of real fluid	vior of 1 flows	f analyt s.	ical	models i	ntroduced in lectu	re to the	actual		
•	To e appl	xplain the stand ications.	ard me	easuren	nent	techniqu	es of fluid mechai	nics and t	heir		
•	• To illustrate the components and working principles of the hydraulic machines- different types of Turbines, Pumps, and other miscellaneous hydraulics machines.										
•	• To analyze the laboratory measurements and to document the results in an appropriate format.										
•	To a civil	ctively apply teo engineering pro	chnical blems	l know	ledg	e and ski	ll for solving day	to day			
Cours	e Out	tcomes: On suc	cessful	l comp	letic	on of this	course, the studen	ts will be	e able		
to				1			,				
CO	Und	erstand the fluid	l flow	concep	ts a	nd get fai	niliarity with flow	measuri	ng		
1	devi	ces		-		•			•		
CO	Und	erstand the sour	ces of	major	and	minor lo	sses and its particle	e conditio	ons.		
2											
CO	Illus	trate the effect of	of chan	ige in p	oress	sure head	, flow rate & coeff	ficient of			
3	discl	harge of flow me	eters.								
CO 4	Perform the experiment on the working and characteristics of hydraulic pumps										
CO 5	Dem	nonstrate practic	al und	erstand	ling	of the va	rious equations of	Bernoull	i		

List of Experiments:

- 1. Determination of coefficient discharge for Venturimeter.
- 2. Determination of coefficient discharge for Orifice meter.
- 3. Study of the Impact of Jet on vanes.
- 4. Determination of the Friction factor of a pipeline.
- 5. Losses in pipes due to contraction.
- 6. Study on performance characteristics of single-stage Centrifugal Pump.

- 7. Study on performance characteristics of multistage Centrifugal Pump.
- 8. Study on performance characteristics of Reciprocating Pump.
- 9. Study on performance characteristics of Pelton wheel turbine.
- 10. Verification of Bernoulli's Equation

Augmented experiments:

- 1. Calibration of contracted rectangular notch / triangular Notch
- 2. Performance characteristics of Kaplan turbine
- 3. Performance characteristics of Francis turbine

Reference Books/Laboratory Manuals:

Fluid mechanics and hydraulic machinery laboratory manual, Department of civil engineering, KSRMCE, Kadapa.

Cour Title	rse e	Geomatics Laboratory					B.Tech CE III Sem (R20)			
Cour Cod	se le	Category	Hours/Week Cre			Credits	Maximum Marks			
20013	807	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		(ICC)	0	0	3	1.5	40	60	100	
	Μ	id Exam Dura	tion:	1.5 H	rs		End Exam D	uration:	3 Hrs	
Course	e Obje	ctives:								
By perf	formin	g this laborator	y, the	stude	nt w	ill be able				
•	to kno	w the usage of	vario	us sur	veyi	ng equipm	ent's and their pr	actical		
	applic	ability.								
•	To acc	quire practical l	knowl	edge o	on ha	andling ba	sic chain survey e	equipmen	t's	
•	To hav	ve the ability to	prepa	are pla	n ar	nd levels of	f ground surface l	oy using l	Plane	
	table s	survey and leve	ling ii	nstrum	ient.					
•	To po	ssess knowledg	ge abo	ut the	The	odolite Su	rveying and Tach	eometric		
	Surve	ying	_	_						
•	To ha	ve the ability to	calcu	ilate a	rea,	volume an	d curve setting.			
•	To po	ssess knowledg	e abo	ut the	adva	anced surv	eying instrument	s and it's		
~	handli	ng.								
Course	Outc	omes: On succ	essful	comp	letic	on of this c	course, the studen	ts will be	able to	
CO	Meas	surement of an	area b	y chai	in su	irvey obtai	n the direction of	a survey	ing line	
1	with	a prismatic and	l surve	eyors (com	pass	. 1 1 1			
CO	Surve	ey the area usin	ig diff	erent	meth	$\frac{100}{10}$ of pla	ine tabling and co	mpass su	rvey and	
2	to ad	just the compas	$\frac{1}{1}$ s trav	erse g	raph	incally.	1 61 11	1		
	Reco	ra the reduced	levels	using	g var	10us metho	ods of levelling at	nd measu	rement	
3		orizontal & Vert	ical al	igles t	by I	neodonte.	during the constr	untion of	vorience	
	Esun	anginooring inf	mes o	of Cull	ing a	ind mining	during the constr	uction of	various	
4	Mag	ure and extract	the d	$\frac{1}{1}$ oto fr	m t	otal station	and interpret the	collector	l data ta	
	weake construction lowest of different optimities									
3	make construction layout of different activities.									

List of Experiments:

- 1. Survey of an area by chain, compass survey (closed traverse) & Plotting.
- 2. Determination of distance between two inaccessible points with compass.
- 3. Radiation method, intersection methods by plane table survey.
- 4. Levelling Longitudinal and cross-section and plotting.
- 5. Measurement of Horizontal and vertical angle by theodolite.
- 6. Trigonometric levelling using theodolite.

7. Determination of height, remote elevation, distance between inaccessible points using total station.

- 8. Determination of Area using total station and drawing map.
- 9. Stake out using total station.
- 10. Setting out Curve using total station

Augmented experiments:

- 1. Profile levelling using Auto level
- 2. Fly levelling using Auto level (differential levelling)

Reference Books/Laboratory Manuals:

Survey laboratory manual, Department of civil engineering, KSRMCE, Kadapa.
Course	Ci	ivil E	ngine	ering	5			
Title		Wo	rksho	р		B.Tech CE	III Sem (I	R20)
	(Skill	orien	ted)				
Course	Category	Ho	ours/V	Veek	Credits	Maxim	um Marks	5
Code								
	C1-11					Continuous	End	
20013S1	SKIII	L	Т	Р	С	Internal	Exam	Total
	oriented					Assessment		
	(SUC)	1	0	2	2	40	60	100
Mid Exam Duration: 1.5 Hrs						End Exam D	uration: 3	Hrs

Course Objectives:

By performing this laboratory, the student will be able

- To Understand the basic properties of materials
- To inculcate the dignity of labor among all students
- Measure to be taken for Safety at workplace and selection of tools
- To work as a member in Team & learn teamwork

Course	Outcomes: On successful completion of this course, the students will be able to
CO 1	Do setting out of a building plan as per drawings using tape and cross staff.
CO^{2}	Differentiate different brick bonds and its applications for construct of
	different masonry walls.
CO 3	Understand the plumbing layout, installation procedure and fixtures used for
005	plumbing.
CO 4	Get awareness on working procedures of plastering, painting & laying of tiles
CO 4	and the materials used for construction of the same.
CO 5	Prepare and test the different composite blocks.

List of Experiments:

- 1. Setting out of a building: The student should set out a building (single room only) as per the given building plan using tape only.
- 2. Setting out of a building: The students should set out a building (single room only) as per the given building plan using tape and cross staff.
- 3. Construct a wall of height 50 cm and wall thickness 1¹/₂ bricks using English bond (No mortar required)-corner portion–length of side walls 60cm.
- 4. Construct a wall of height 50 cm and wall thickness 2 bricks using English bond (No mortar required) corner portion length of side walls 60cm.
- 5. Computation of Centre of gravity and Moment of inertia of a given rolled steel section by actual measurements.
- 6. Installation of plumbing and fixtures like Tap, T-Joint, Elbow, Bend, Threading.
- 7. Plastering and finishing of walls.

- 8. Application of wall putty and painting a wall.
- 9. Application of base coat and laying of Tile flooring of one square meter
- 10. Preparation of soil cement blocks for masonry and testing for compressive strength.

Augmented experiments:

- 1. Casting and testing of Flyash Block.
- 2. Preparation of cover blocks for providing cover to reinforcement.

Reference Books/Laboratory Manuals:

Civil Engineering Workshop manual, Department of civil engineering, KSRMCE, Kadapa.

B.Tech IV SEM - CE (R20UG)

Cour	se	Busines	s Eco	onom	ics a	and	B.Tech CE IV Sem (R20)			
Cour Cod	e se e	Category	Hours/Week Credits				Maximu	m Marks	6	
20254	01	Humanities Social Sciences	L	Т	Р	P C Continuous Internal Assessment End Exam				
		(HSS)	3	0	0	3	40	60	100	
	Μ	lid Exam Dura	tion:	1.5 H	lrs		End Exam D	uration: 3	3 Hrs	
Course	Obje	ctives:								
• '	To equip the budding engineering student with an understanding of concepts and									
1	tools									
•	of eco	nomic analysis	•							
• '	To pro	ovide knowledg	ge of H	Busine	ess ec	onomics th	hrough differentia	al econom	nics	
	conce	pts and theories	5.							
• '	To ma	ake aware of ac	count	ing co	ncep	ts to analy	ze and solve com	plex prob	olems	
1	relatir	ng financial rela	ted m	atters	in in	dustries.				
• '	To un	derstand profes	siona	l and e	ethica	l responsi	bility and ability	to commu	inicate	
	effect	ively.								
Course	Outc	omes: On succ	essful	comp	oletio	n of this co	ourse, the student	ts will be	able to	
CO 1	Und	erstand the con	cept o	f Busi	iness	Economic	s and able to app	ly technic	lues	
001	for d	lemand forecast	ing.							
CO 2	Und	erstand and app	licati	on the	prod	uction fun	ctions for making	g business	5	
	decisions.									
CO 3	To Analyze the markets conditions and determine price-output relations.									
CO 4	To understand the concepts of accounting and able to prepare the financial statements of a business firm.									
CO 5	To e	valuate, analyz	e and	interp	ret th	e financia	l performance of	a busines	s.	

<u>UNIT – I</u>

Introduction to Business Economics: Meaning, Definition, Nature and scope of Business Economics, Demand Analysis: Concept of Demand, Determinants of demand, Law of Demand and its exceptions, Elasticity of Demand – Types, Measurement of Elasticity of Demand, Demand Forecasting – Techniques of Demand Forecasting.

<u>UNIT – II</u>

Theory of Production and Cost Analysis:

Production Functions: Law of variable proportion, Isoquants and Isocost, least cost combination of inputs, Returns to Scale and Cobb- Douglas production function. Internal and external economies of scale.

Cost Analysis: Cost concepts – Break-Even Analysis (BEA) – Break Even Point – significance and limitations of BEA.

<u>UNIT – III</u>

Classification of Markets and Pricing Methods:

Markets structures: Perfect and Imperfect competition – Features of Perfect Competition, Monopoly, Monopolistic Competition and Oligopoly. Price- Output determination under perfect competition, monopoly and monopolistic competition – Price rigidity in Oligopoly.

Methods of pricing – cost plus pricing, marginal cost pricing, skimming pricing, penetration pricing, differential pricing and administrative pricing.

<u>UNIT – IV</u>

Introduction to Accounting: Definition to Accounting, objective and need for Accounting, Double Entry Bookkeeping – Accounting process, Journal Ledger, Trial Balance, and Final Accounts – Trading Account, Profit and Loss Account and Balance sheet with simple problems.

UNIT - V

Financial Analysis Through Ratios: Concept of Financial Ratios - Types of Ratios - Liquidity Ratio, Turnover Ratio, Capital Structure Ratio, Profitability Ratio (Simple problems).

Text Books:

- Varshney & amp; Maheswari: Managerial Economics, Sultan Chand Publishers, 2009.
- 2. Prasad and K.V.Rao: Financial Accounting, jaibharth Publishers, Vijayawada.
- Paul A Samuleson and William nordhaus: Economics, Oxford University Publications. M L Jhingan: Micro Economics & amp; Macro Economics, VrindaPublacations (P) Ltd.
- 4. Lipsey & Chrystel, Economics, Oxford University Press

- 1. P.L Mehtha: Managerial Economics, Sulthan Chand Publishers
- 2. K KDewett Managerial Economics, S. Chand Publishers
- 3. S.P Jain & amp; K.L Narang: Financial Accounting, Kalyani publishers.
- 4. M.Sugunatha Reddy: Managerial Economics and Financial Analysis, Research India Publication, New Delhi, 2013.

Cou Tit	rse le	Hydrau N	lics d Mach	& Hy inery	drau 7	ılic	B.Tech CE IV Sem (R20)				
Cour Coc	rse le	Category	Hou	ırs/W	eek	Credits	Maximur	Maximum Marks			
2001	402	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		(ICC)	3	0	0	3	40	60	100		
	N	/lid Exam Dura	ation:	1.5 H	Irs		End Exam Du	ration: 3	Hrs		
Cours	e Obj	ectives:									
•	To id	entify the effec	t of b	ounda	ry lay	yer aspects	and flow around s	ubmerge	d		
	bodie	es.									
•	• To illustrate the flow characteristics and most economical sections of open										
	channel flow.										
•	To st	udy the perform	nance	chara	cteris	stics and w	ork done and effic	iency cur	ves on		
	impa	ct of jet on vane	es.								
•	Deve	lop students to	know	the in	stalla	ation, work	king principles and	character	ristics		
	of ce	ntrifugal pumps	5.								
•	Anal	yze the working	g prino	ciples	and o	operating c	haracteristics of pu	umps.			
Cours	e Out	comes: On succ	cessfu	l com	pletic	on of this c	ourse, the students	will be a	ble to		
CO	Acqu	ire knowledge	on bo	undar	y lay	er theory a	nd its applications	in variou	IS		
1	field	s.									
CO	Unde	erstand the hydr	o dyn	amic	prope	erties of flu	uids to design econ	omical o	pen		
2	chan	nels.									
CO	Analyse the hydro-dynamic forces on vanes and evaluate velocity triangles.										
	Classify and study performance characteristics of hydroulic turbines										
4	Classify and study performance characteristics of hydraune turbines.										
CO	D Get knowledge on Classification, losses, efficiencies and limitations of different										
5	pum	ps.									

<u>UNIT – I</u>

Boundary Layer Theory: Boundary layer concepts – Thickness of boundary layer - Characteristics of boundary layer along a thin flat plate - Vonkarmen momentum integral equation - Laminar and turbulent boundary layers (no derivation) - Laminar sub-layer separation of boundary layer - Control of boundary layer- Flow around submerged objects – Drag and lift - Magnus effect.

<u>UNIT – II</u>

Open channel flow: Types of flows, Types of channels, Velocity distribution, Chezy's, Manning's and Bazin's formulae for uniform flow, Most Economical sections, Critical flow, Specific Energy, Critical depth, Computation of critical depth; Critical, subcritical and supercritical flows, non-uniform flow, Dynamic equation for gradually varied flow, Types of slopes, Surface profiles, rapidly varied flow, Hydraulic jump and its applications, Surges.

<u>UNIT – III</u>

Impact of Jet on Vanes: Hydrodynamic force of jets on stationary and moving, vertical, inclined and curved vanes, Series of vanes, Jet striking centrally and at tip, Velocity triangles at inlet and outlet, Expressions for work done and efficiency.

$\underline{UNIT} - IV$

Hydraulic Turbines: Layout of a typical hydropower installation, Heads and efficiencies, Classification of turbines, Pelton wheel, Francis turbine, Kaplan turbine, Working and working proportions, Velocity diagrams, Work done and efficiency, Hydraulic design, Runaway speed, Draft tube theory, Function and efficiency. Governing of turbines, Surge tanks, Unit quantities and specific speed, Performance of turbines, Characteristic curves, Cavitation, Causes, Effects, Classification of hydropower plants, Load factor, Utilization factor, Capacity factor, Estimation of hydropower potential.

$\underline{UNIT} - \underline{V}$

Pumps: Pumps - Components, Classification; Centrifugal pumps - Classification, Heads, Losses and efficiencies, Limitation of suction lift, Work done, Minimum starting speed, Specific speed; Multistage pumps, Pumps in parallel and series, Performance of pumps, Characteristic curves, Net positive suction head, Priming, Cavitation, reciprocating pumps - Classification, Work done, Slip, Limitations; Special pumps – Self priming pump, Gear pump, Jet pump, Airlift pump; Latest developments in pumps.

Hydropower Engineering: Classification of hydropower plants – Load factor - Utilization factor - Capacity factor – Estimation of hydropower potential.

Text Books:

- R. K. Rajput, a Textbook of Fluid Mechanics, S. Chand Publishers, 5th Edition, 2013.
- 2. R. K. Bansal, Fluid Mechanics and Hydraulic Machines, Laxmi Publishers, 9th Edition, 2011.
- Introduction to Fluid Mechanics and Fluid Machines by SK Som, Gautam Biswas, Suman Chakraborthy, Mc Graw Hill Education (India) Private Limited
- Fluid Mechanics and Hydraulic machines by Manish Kumar Goyal, PHI learning Private Limited, 2015

- P. N. Modi and S. M. Seth, Hydraulics and Fluid Mechanics Including Hydraulic Machines, Standard Book House, 20th Edition, 2011.
- Domkundwar and Domkundwar, A Textbook of Fluid Mechanics and Hydraulic Machines, Dhanpat Rai and Co, 6th Edition, 2014.
- 3. V.T. Chow, Open Channel Flow, 3rd Edition, McGraw–Hill Publishers, 2009.
- K. Subramanya, Flow in Open Channels, 3rd Edition, Tata McGraw Hill Publishers, 2010.

Cours Title	se So	il Me	chan	ics		B.Tech CE l	IV Sem (H	R20)		
Cours Code	Category	Hours/Week Credits				Maximum Marks				
20014	Professional 03 Core	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(PCC)	3	0	0	3	40	60	100		
	Mid Exam Dura	tion:	1.5 H	lrs		End Exam D	uration: 3	3 Hrs		
Course	Objectives:									
•]	'o familiarize soils' i	ndex j	proper	ties a	nd behavio	or under different	t condition	18.		
• 7	To understand concepts of soil permeability & seepage & their role in									
groundwater flow.										
• 7	o understand the im	portar	nce of	stress	s distributi	on in soils and di	fferent loa	aded		
a	reas.									
•]	To learn principles of	soil c	compa	ction	&consolic	lation & their app	olications	in		
e	ngineering projects.									
• 7	o understand the con	ncept	of she	ar str	ength and	familiarize onese	elf with			
1	aboratory testing tecl	nnique	es for	soil s	hear streng	gth and their inter	rpretation.			
Course	Outcomes: On succ	essful	comp	letior	of this co	urse, the students	s will be a	ble to		
CO 1	Describe soil charac	cterist	ics by	anal	yzing the s	oil's physical and	d index			
	properties.									
CO 2	Apply principles of permeability and seepage to solve problems related to									
	groundwater flow.									
003	Estimate stress distribution in soils under various loading conditions.									
CO 4	and soil settlements	or by	merr	oreting	g the comp	baction, consolida	ation prop	erties,		
CO 5	Determine the shear	r stren	igth of	f soils	by interp	reting the laborat	ory test re	sults.		

<u>UNIT - I</u>

Introduction: Definition, origin and formation of soil, List of different soil types, Definition of mass, weight- Relation between mass and weight- Units of mass and weight in SI units-Phase Diagram, Voids ratio, Porosity, Percentage Air Voids, Air content, Degree of saturation, Moisture content, Specific gravity, Bulk density, Dry density, Saturated density, Submerged density, and their interrelationships -clay mineralogy and soil Structure.

Index Properties of Soils and Their Determination: Index Properties of soils and their significance. Various index properties and their Laboratory determination, -Water content, Specific Gravity, Particle size distribution (Sieve analysis and Hydrometer

analysis), Relative density, Consistency limits and their indices, in-situ density, Activity of Clay, thixotropy of clay, IS classification - Plasticity chart and its importance.

<u>UNIT - II</u>

Permeability: Types of soil water – capillary rise – flow of water through soils – Darcy's law- permeability – Factors affecting permeability – laboratory determination of coefficient of permeability –Permeability of layered systems.**Seepage Through Soils:** seepage velocity, Seepage pressure, seepage through soils- total, neutral and effective stresses – quicksand condition — flow nets: characteristics and uses

<u>UNIT - III</u>

STRESS DISTRIBUTION IN SOILS: Importance of estimation of stresses in soils – Boussinesq's and Westergaard's theories for point loads, stress distribution in different loaded areas-line load, uniformly loaded circular, strip footing, pressure bulb, variation of vertical stress under point load along the vertical and horizontal planes – Newmark's influence chart.

<u>UNIT - IV</u>

Compaction: Mechanism of compaction – factors affecting – effects of compaction on soil properties – Field compaction Equipment – compaction control – ZAVL.

Consolidation: Types of compressibility, Types of compressibility – Immediate settlement – Primary consolidation and secondary consolidation – Stress history of clay, normally consolidated soil, over consolidated soil and under consolidated soil, pre-consolidation pressure and its determination- Estimation of settlements -Terzaghi's 1-D consolidation theory – Coefficient of consolidation and its determination.

<u>UNIT -V</u>

Shear Strength of Soils: Definition and use of shear strength - Source of shear strength-Normal and Shear stresses on a plane – Mohr's stress circle- Mohr-Coulomb failure theory- Measurement of shear strength, Drainage conditions -Direct shear test, Triaxial shear test, Unconfined compression test and vane shear test – shear strength of granular soil, shear strength of clay, Factors affecting shear strength of granular soils and clay, Liquefaction.

Text Books:

- Gopal Ranjan and A. S. R. Rao, Basic and Applied Soil Mechanics, New Age International Pvt. Ltd., 2nd Revised Edition, 2014.
- K. R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers and Distributors, 7th Edition, 2014.
- Geotechnical Engineering by Manoj Dutta & Gulati S.K Tata McGraw-Hill Publishers New Delhi.
- Soil Mechanics and Foundation Engineering by VNS Murthy, CBS Publishers and Distributors

- Braja M. Das, Principles of Geotechnical Engineering, Cengage Learning India, 7th Edition, 2009.
- 2. B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, Soil Mechanics and Foundation, Laxmi Publications Pvt. Ltd., 16thEdition, 2014.
- C. Venkatramaiah, Geotechnical Engineering, New Age International Publishers, 3rd Edition, 2010.
- 4. Lambe, T. W. and Whitman, R. V., Soil Mechanics, John Wiley and Sons, Singapore, 2000.

Cours Title	se Stru	ctura	l Ana	lysis	5	B.Tech CE	IV Sem (l	R20)		
Cours Code	category	Но	urs/Wo	eek	Credits	Maximum Marks				
200140	Professional O4 Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(ICC)	3	40	60	100					
	Mid Exam Du	ration	: 1.5 H	Irs		End Exam D	uration: 3	3 Hrs		
Course	Objectives:									
• [To demonstrate analytical methods for determining strength & stiffness and assess									
5	stability of structura	l mem	bers.							
• [To enable the studer	nt, ana	lyze in	deter	minate trus	sses				
•	To make the student	to un	derstar	nd the	analysis p	procedures for ana	alyzing fix	ed		
6	andContinuous bear	ns.								
• 7	To enable the studer	nt to u	ndergo	anal	vsis proced	lure using				
1	moment distribution	meth	od.			in and				
• 7	To enable the studer	nt to a	nalvze	the ty	vo hinged	and three hinged	arches			
Course	Outcomes: On suc	cessfu	l comp	letio	n of this co	urse. the students	will be al	ole to		
CO1	Analyse the statica	ally in	determ	inate	trusses.	,				
CO 2	Analyse fixed and	contir	nuous t	beams	s for variou	us loading conditi	ons.			
CO 3	3 Analyse frames and continuous beams using Slope-Deflection Method.									
CO 4	4 Analyse frames and continuous beams using Moment distribution Method.									
CO 5	5 Analyse two hinged and three hinged arches.									
	5 Anaryse two minged and three minged arches.									

<u>UNIT – I</u>

Indeterminate Structural Analysis: Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear force – Castigliano's first theorem - Deflections of simple beams and pin jointed trusses - Indeterminate Structural Analysis – Determination of static and kinematic indeterminacies – Solution of trusses up to two degrees of internal and external indeterminacy – Castigliano's second theorem.

$\underline{UNIT} - \underline{II}$

Fixed Beams: Introduction to statically indeterminate beams with U.D.L, central point load and eccentric point load. Number of point loads and uniformly varying loads shear force and bending moment diagrams-Deflection of fixed beams effect of sinking of support.

Continuous Beams: Introduction-Clapeyron's theorem of three moments-Analysis of continuous beams with constant moment of inertia with one or both ends fixed-continuous

beams with overhang, continuous beams with different moment of inertia for different spans-Effects of sinking of supports-shear force and Bending moment diagrams.

<u>UNIT - III</u>

Slope-Deflection Method: Introduction- derivation of slope deflection equationapplication to continuous beams with and without settlement of supports- Analysis of single bay, single storey, portal frame including side sway.

$\underline{UNIT} - IV$

Moment Distribution Method: Introduction to moment distribution method- application to continuous beams with and without settlement of supports. Analysis of single storey, portal frames – including Sway

$\underline{UNIT} - \underline{V}$

Arches: Introduction- hinges-transfer of load to arches-linear arch-hinges in the arch-arch action-Horizontal force – three hinged arches – circular arches – springs at different level-Two hinged arches- two hinged circular arches – fixed arches (only theory) - Temperature stresses in arches.

Text Books:

- 1. Basic Structural Analysis, C. S. Reddy Tata Mc.Graw-Hill, New Delhi.
- 2. Analysis of Structures by T.S. Thandavamoorthy, Oxford University Press, New Delhi.
- 3. Analysis of Structures- Vol. I and II, V. N. Vazirani and M. M. Ratwani, Khanna Publishers, New Delhi.
- Structural Analysis I Analysis of Statically Determinate Structures, P. N. Chandramouli, Yesdee Publishing Pvt Limited, Chennai

- 1. Theory of Structures, B. C Punmia, A. K Jain & Arun K. Jain, Lakshmi Publications.
- 2. Theory of Structures, R.S. Khurmi, S. Chand Publishers.
- 3. Structural analysis by R.C. Hibbeler, Pearson, New Delhi.
- Structural Analysis-I, Hemanth Patel, Yogesh Patel, Synergy Knowledge ware, Mumbai

Cours	se Title	Transpor	tatio	n Eng	ginee	ring	B.Tech CE IV Sem (R20)				
Cours Code	se	Category	Hours/Week Credits				Maximum Mark	Maximum Marks			
2001405		Professional Core	L T P			С	Continuous Internal Assessment	End Exam	Total		
		(PCC)	3	0	0	3	40	60	100		
	Mie	l Exam Duratio	on: 1.	5 Hou	urs	End Exam Dura	ation: 3 l	Hours			
Cours	e Objec	tives:									
This co	is course is taught to impart the knowledge in highway planning, alignment, geometric										
design	of diffe	rent elements of	high	way, o	diffe	rent traffic	surveys, traffic reg	gulation a	and		
manag	gement a	nd pavement de	sign.								
Cours	e Outco	mes: On succes	sful c	ompl	etion	of this co	urse, the students v	vill be ab	le to		
CO 1	Condu project	ct different engins.	neerir	ng sur	veys	and take u	ıp different highwa	ay alignm	ent		
CO 2	Design	highway paven	nent g	eome	trics.						
CO 3	Collect traffic data, analyze the data and design suitable traffic management systems										
CO 4	4 Do structural design of flexible and rigid pavements.										
CO 5	Conduct laboratory tests on pavement materials to evaluate their suitability and adaptability for different pavement construction.										

<u>UNIT-I</u>

Highway Development and Planning: Highway development in India – Necessity for Highway Planning – Different Road Development Plans – Classification of Roads – Road Network Patterns.

Highway Alignment: Factors controlling alignment, engineering surveys, Drawing and report.

UNIT-II

Highway Geometric Design: Importance of Geometric Design - Highway Cross Section Elements-Sight Distance Elements - Stopping sight Distance, Overtaking Sight Distance, and intermediate Sight Distance - Design of Horizontal Alignment - Design of Super Elevation-Design of Transition Curves -Design of Vertical alignment – Gradients – Vertical curves.

UNIT-III

Traffic Engineering: Basic Parameters of Traffic -Volume, Speed and Density– Highway Capacity-Traffic Volume Studies - Speed studies - Road Accidents – Condition Diagram and Collision Diagrams. Traffic Regulation and Management: Road Traffic Signs – Road markings -Types of Road Markings- Design of Traffic Signals – Webster Method – Saturation flow – Phasing and timing diagrams – Numerical problems.

UNIT-IV

Pavement Design: Types of pavements – Difference between flexible and rigid pavements – Pavement Components – Functions of pavement components – Design Factors – Design methods – IRC methods only (as per IRC 37-2002) – Design of Rigid pavements – Critical load positions – Westergaard's stress equations – Stresses in rigid pavements.

UNIT-V

Highway Materials and construction practice: Desirable Properties and Testing of Highway Materials-Aggregate-Crushing, Abrasion, Impact Tests, Water absorption, Flakiness and Elongation Indices-Tests on Bitumen-Penetration, Ductility, Viscosity and Softening point Tests-Construction Practice-Water Bound Macadam Road, Bituminous Road and Cement Concrete Road [as per IRC and MORT&H specifications]-Highway Drainage.

Text Books:

- 1. S K Khanna, C E G Justo, and A. Veeraragavan "Highway Engineering", Nemchand Publications, New Delhi.
- Papacoastas, C. S. and Prevedouros, Transportation Engineering and Planning, Third Edition, Third Impression; Pearson Education, 2018
- Subhash C Saxena, Text Book of Highway and Traffic Engineering; First Edition; CBS Publishers and Distributors. New Delhi, 2014
- Nicholas J Garber and Lester AHoel, Traffic and Highway Engineering, 5th Edition, Cengage Learning India Private Limited, New Delhi, 5th Indian Reprint, 2018

- G V Rao "Principles of Transportation and Highway Engineering", Tata McGraw-Hill Companies, Inc. New York.
- 2. L R Kadiyali "Principles and Practice of Highway Engineering", Khanna Publishers, New Delhi.
- 3. ParthaChakroborthy, Animesh Das, "Principles of Transportation Engineering", Prentice Hall of India, New Delhi.

Co T	ourse litle	Building Pl	Building Planning and Drawing (AutoCAD)					IV Sem (R20)	
Co C	ourse ode	Category	Hours/Week Credits				Maximum Marks			
200)1406	Engineering Science	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		0	0	3	1.5	40	60	100		
		Mid Exam Du	ratior	n:	End Exam Duration: 3 Hrs					
Cour	se Objeo	ctives:								
•	To Un	derstand various	types	of co	onven	tional sign	s and brick bond	ls.		
•	To Dra	aw the plan secti	on and	d elev	vation	for doors,	trusses, and stai	rcases.		
•	To Use AutoCAD tools to draw building plans, sections and elevations from a									
	given									
	line di	agram and speci	ficatio	ns.						
•	To pre	pare plan, sectio	n & el	levati	on of	residentia	l building			
•	To De	velop working d	rawing	gs of	reside	ential build	lings.			
Cour	se Outco	omes: On succes	sful co	omple	etion	of this cou	rse, the students	will be al	ole to	
CO	Interpre	et the symbols, s	igns, a	and co	onver	tions from	the given draw	ing.		
1										
CO	Create	layout plan, sand	ction d	lrawii	ngs of	f doors, tru	sses and stairca	ses.		
2										
CO	Prepare	e any type of bui	lding	drawi	ng us	ing AutoC	CAD software.			
3										
CO	D Draw plan, elevation, and sections in AutoCAD									
4										
CO	Develop working layouts of Electrical and plumbing drawings for residential									
5	buildin	g								

List of Experiments:

- 1. Introduction to Computer Aided Drafting and Conventional Signs.
- 2. Brick bonds: English bond & Flemish bond Odd and Even courses.
- 3. Drawing elevation of a King Post Truss.
- 4. Drawing elevation and section of a fully panelled door.
- 5. Developing plan and section of dog-legged staircase.
- 6. Developing plan of single storied residential building.
- 7. Developing section and elevation of single storied residential building.
- 8. Developing plan of two storied residential building.
- 9. Developing section and elevation of two storied residential building.
- 10. Development of working drawing of building Electrical and Plumbing Layout

Text Books:

1. Civil Engineering Drawing-I by N. Sreenivasulu, S. Rama Rao – Radiant PublishingHouse.

2. Civil Engineering Drawing-II by N. Sreenivasulu – Radiant Publishing House.

- 1. Engineering Graphics by P. J. Sha S. Chand & Co.
- 2. Civil Engineering Drawing-I by S. Mahaboob Basha Falcon Publishers
- 3. Building drawing by M. G. Shah Tata McGraw-Hill Education.

Co T	urse itle	Soil Mec	hanic	es La	bora	tory	B.Tech CE	B.Tech CE IV Sem (R20)			
Co Co	urse ode	Category	Hou	ırs/W	eek	Credits	Maxim	um Mark	S		
2001407		Professional Core	L T P			С	Continuous Internal Assessment	End Exam	Total		
		(ICC)	0	0	3	1.5	40	60	100		
		Mid Exam Du	ratior	ı:	End Exam D	Duration:	3 Hrs				
Cours	se Objeo	ctives:	ives:								
•	• To Identify index properties of soil and determine the field density.										
•	To An	alyze the shear p	param	eters	and e	engineering	g properties of s	soil.			
Cours	se Outco	omes: On succes	ssful o	comp	letior	of this co	urse, the studen	ts will be	able to		
CO	Unders	stand the index p	oroper	ties c	of soil	with refer	ence to Indian S	Standard (Code		
1	of Prac	tice.									
CO	Identif	y the stress histo	ory an	d gen	eral j	properties of	of soil met with	construct	ion.		
2											
CO	Analys	se the field comp	oaction	n con	trol a	nd compar	e its results to t	he laborat	tory		
3	compa	ction test.									
CO	Compare the shear characteristics of soil for testing, performing the test,										
4	collecting and analyzing data according to ASTM.										
CO	Apply the laboratory results to problem identification, quantification, and basic										
5	soil me	echanics related	desig	n pro	blem						

Index Properties of Soil:

- 1. Determination of water content and specific gravity.
- 2. Grain size analysis sieve analysis and hydrometer analysis.
- 3. Tests for Atterberg's limits.
- a) Determination of liquid limit Casagrande's method and cone penetrometer method.
- b) Determination of plastic limit.
- c) Determination of shrinkage limit.
- 4. Determination of field density core cutter method and sand replacement method.

Engineering Properties of Soil:

- 5. Standard Proctor's compaction test and Modified compaction test.
- 6. Permeability of soil constant head test and variable head test.
- 7. CBR Test.
- 8. Direct shear test.
- 9. Unconfined compression test.

10. Vane shear test

Augmented experiments:

- 1. Tri-axial compression test.
- 2. Consolidation test.

<u>Reference Books/Laboratory Manuals:</u>

Geotechnical Engineering Laboratory Manual, KSRMCE, Kadapa.

Co T	urse itle	Transport L	tatio abor	n En ator	B.Tech CE IV Sem (R20)						
Co Co	urse ode	Category	Hours/Week Credits				Maxim	Maximum Marks			
200	1408	Professional Core	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		(ICC)	0	0	3	1.5	40	60	100		
		Mid Exam Du	ratior	1:	End Exam Duration: 3 Hrs						
Cour	se Obje	ctives:									
Identi	fy the pi	roperties and bel	navior	of hi	ighwa	ay material	for different lo	bading pat	terns.		
Demo	onstrate t	strate tests on transportation materials like aggregate, sand etc. and check their									
Suitat	tability.										
Under	Understand the properties of aggregates by conducting specific gravity and shape of										
aggre	gates.	. ,.	c 1 ·			• 1 1 4	1	1 (1)			
Identi	Ty the va	arious properties	OI DI	tumei	n mat	erial and to	o obtain the gra	ide of bitu	imen		
used I		cation of aggreg	ale m	1X.	املامه	of this as	una the studen		abla		
to	se Outco	omes: On succes	ssiul	comp	letion	f of this co	urse, the studen	its will be	able		
CO	Recall	the basic proper	ties of	f sanc	l and	aggregates	s for determinir	ng their			
1	suitabi	lity through vari	ous la	borat	ory to	ests.		-			
CO	Identif	y the problems a	ssoci	ated v	vith r	oads based	l on the propert	ies to sug	gest		
2	the app	propriate remedy	•								
CO	Determ	nine mechanical	prope	erties	of ag	gregates in	laboratory for	deciding	its		
3	suitability in construction practice.										
CO	Outline the various properties of bitumen material to obtain the grade of										
4	bitumen.										
CO	• Utilize the concept on properties of aggregates and binding materials for design										
5	of road	ls.									

List of Experiments

Road Aggregates:

- 1. Aggregate Crushing value
- 2. Aggregate Impact Test.
- 3. Specific Gravity and Water Absorption.
- 4. Attrition Test
- 5. Abrasion Test.
- 6. Shape tests

Bituminous Materials:

- 1. Penetration Test.
- 2. Ductility Test.
- 3. Softening Point Test.
- 4. Flash and fire point tests.

Text Books:

 G Venkatappa Rao, K Ramachandra Rao, Kausik Pahari and D V Bhavanna Rao "Highway Material Testing and Quality Control", I K International Publishing House Pvt. Limited, New Delhi.

- 1. Ajay K Duggal and Vijay P Puri "Laboratory Manual in Highway Engineering", New Age International (P) Limited, Publishers, New Delhi.
- S K Khanna, C E G Justo and A Veeraraghavan "Highway Engineering", Nem Chand & Bros Publishers, Roorkee, Uttarakhand.

Course	e Title	Advar	nced C Wo	ivil E orksho	ngine)p	ering	B.Tech CE IV Sem (R20)					
Cou Co	irse de	Category	Hou	ırs/W	eek	Credits	Maximum Marks					
2001	20014S2Skill Oriented (SOC)LTPCContinu Intern Assess							End Exam	Total			
		(300)	1	0	2	2	40	60	100			
		Mid Exam I	Durati	on:			End Exam Duration: 3 Hours					
Course	e Objec	ives:										
•	To enal	Γο enable the students to determine the properties, identification of civil										
	enginee	engineering materials and Tests on Brick.										
•	To enable the students to determine test on Cement and Aggregate.											
•	To enal	ble the stude	nts to l	now	about	of Construe	ction of masonry	y brick wal	11.			
•	To kno	w the Desigr	n concr	ete m	ixes a	s per IS coo	les.					
•	To enal	ble the stude	nts giv	e dem	onstra	ation about	bar bending, ho	use wiring	and			
	paintin	g.	U				6	U				
Course	e Outco	mes: On suc	cessfu	l com	pletio	n of this co	urse, the student	s will be a	ble to			
CO	Gain b	asic knowled	lge of '	Work	shop F	Practice and	Safety useful for	or our dail	V			
1	living.		C		1		5		,			
CO	Demor	nstrate cemer	nt and a	aggreg	gate pi	roperties for	r construction p	urpose				
2												
CO 3	Construction of masonry brick walls by using Bonds											
CO 4	Design concrete mixes as per IS codes											
CO 5	To rev Scaffo	eal the impoi	rtance	of Wa	ll Pair	nting, Hous	e wiring, Shutte	ring and				

- **1. Properties and Identification of Civil Engineering Materials:** Properties and identification of building materials-Market survey for building materials.
- 2. Tests on Brick: Visual inspection test for colour, shape and size-Soundness of brick-Water absorption test of brick-Efflorescence test of brick-Compressive strength of brick.
- 3. Tests on Cement: Fineness of cement by dry sieving-Standard consistency of cement.
- **4. Tests on Fine Aggregate:** Sieve Analysis of Fine aggregate-Specific gravity of Fine aggregate-Bulking of Fine aggregate.
- **5. Masonry:** Construction of masonry brick wall using English bond-Construction of masonry brick wall using Flemish bond.
- 6. Concrete Mix Design: As Per IS Method

- **7. Bar Bending and Reinforcement:** Bar bending of reinforcement skeleton for foundations, columns, beams.
- 8. Painting: External wall painting-Internal wall painting
- 9. House Wiring: 16 A Line-6 A Line
- **10. Shuttering And Scaffolding:** Shuttering for beams and slabs-Shuttering for columns and Walls-Steel scaffolding-Single and double scaffolding.

Reference Books/Laboratory Manuals:

- 1. Civil Engineering Workshop Laboratory Manual, KSRMCE, Kadapa.
- S. K. Duggal, Building Materials, New Age International Publishers, 4th Edition, 2010.
- A. M. Neville, Properties of Concrete, John Wiley and Sons, New Delhi, 5th Edition, 2012.

IS Codes:

- 1. IS 1077 1992: Brunt Clay Building Brick.
- 2. IS 4031 1988: Chemical Analysis and Tests on Cement.
- 3. IS 383 1970: Coarse and Fine Aggregates.
- 4. IS 10264 2009: Mix Design of Concrete.
- 5. IS 1199 1959: Methods of Sampling and Analysis of Concrete.
- 6. IS 13311- 1992: Method of Non-destructive Testing of Concrete.
- 7. IS 7293 1974: Safety Code for Working with Construction Machinery.
- 8. IS 2212 1991: Code of Practice for Brick Work.
- 9. IS 2502 1993: Code of Practice for Bar Bending and Fixing of Bars.
- 10. IS 2395(1) 1994: Code of Practice for Painting Concrete, Masonry.
- 11. IS 732 1989: Code of Practice for Electrical Wiring Installations.
- 12. IS 14678 1999: Guidelines for False work for Concrete Structures

Co Ti	urse itle	Univers	sal H	uman	va	lues	B.Tech CE I	V Sem (R	20)		
Co	urse ode	Category	Ног	ırs/We	ek	Credits	Maximur	n Marks			
202	4410	Humanity Sciences	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		(HSC)	3	0	0	0	40	60	100		
Mid Exam Duration: 1.5 Hrs							End Exam Du	ration: 3	Hrs		
Cour	Course Objectives:										
Objective of this course is to make the students											
•	• To understand the moral values that ought to guide the Management profession										
	and r	esolve the mor	ral iss	ues in t	the p	profession,	,				
•	• To justify the moral judgment concerning the profession.										
•	• To develop a set of beliefs, attitudes, and habits that engineers should display										
	conce	erning morality	у.								
•	To cr	eate an awarei	ness o	n Man	ager	ment Ethic	s and Human Value	es.			
•	To in	spire Moral ar	nd Soc	cial Va	lues	and Loyal	lty.				
•	To ap	preciate the ri	ghts o	of other	s.						
•	This	course deals w	vith pr	ofessio	onal	ethics whi	ch includes moral i	ssues and	L		
	virtue	es, social respo	onsibi	lities of	f an	engineer,	right qualities of m	oral leade	rship		
Cour	rse Out	comes: On suc	ccessf	ul com	plet	ion of this	course, the students	s will be a	able to		
CO	Devel	op appropriate	techr	nologie	s an	d managei	ment patterns to cre	ate harmo	ony in		
1	profes	sional and per	sonal	life.							
CO	Ensure	e students sust	ained	happin	less	through id	lentifying the essent	tials of hu	ıman		
2	values	and skills									
CO	Get av	vareness of typ	pes of	ethical	l cha	allenges an	d dilemmas confron	nting mer	nbers of		
3	a rang	e of profession	ıs (bu	siness,	mee	dia, police	, law, medicines, re	search).			
CO	Bring to bear ethical analysis and reasoning in the light of normative ethics										
	framev	works on a sel	ection	of eth	ical	challenges	s and dilemmas acro	oss the ch	osen		
-	range of professions.										
CO	Relate	ethical conce	pts an	d mate	rials	s to ethical	problems in specifi	ic profess	ions		
5	and pr	ofessionalism.	•								

<u>UNIT – I</u>

Human Values: Morals, Values and Ethics - Integrity - Trustworthiness - Work Ethics -Service Learning - Civic Virtue - Respect for others - Living Peacefully - Caring - Sharing -Courage - Value Time - Co-operation - Commitment - Empathy - Self-confidence -Spirituality – Character.

<u>UNIT – II</u>

Engineering Ethics: Senses of Engineering Ethics – Variety of Moral issues – Types of inquiry – Moral Dilemmas – Moral Autonomy – Kohlberg's Theory – Consensus and Controversy – Professions and Professionalism – Professional ideals and virtues.

<u>UNIT – III</u>

Engineer's Responsibility for Safety: Safety and Risk – Assessment of Safety and Risk – Risk benefit Analysis – Reducing Risk – The Government Regulator's Approach to Risk – Chernobyl Case and Bhopal Case studies

<u>UNIT – IV</u>

Value Education: Self- exploration- its content and process- natural acceptance-Happiness and Prosperity- Understanding Human relations.

UNIT-V

Holistic Perception of Harmony: Understanding the Harmony in the society- -Universal order- critical appreciation of Human values- Justice, Trust.

Text Books:

- Mike martin and Roland Scherzinger. "Ethics in Engineering", McGrow Hill, New York 2005.
- Charles E Harris. Michael S Pritchard and Michael J Rabins. "Engineering Ethics Concepts and Cases", Thompson Learning 2000.
- R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values andProfessional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93- 87034-47-1.

B.Tech V SEM - CE (R20UG)

Course Title	Hydrolo	Hydrology & Irrigation					B.Tech CE V Sem (R20)			
Course Code	Category	Hou	rs/W	eek Credits		Maximum Marks				
2001501	Professional Core (BCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(PCC)	3	0	0	3	40	60	100		
	Mid Exam Duration	on: 1.5	Hrs		•	End Exam	Duration: 3	Hrs		
Course Objec	Course Objectives:									
 The students acquire knowledge about hydrologic cycle, precipitation its measurement. To understand the precipitation forms, evaporation. types measurements. To study the Infiltration, surface runoff, floods and its importance and effects. Introduction to the types of irrigation systems and planning and design of irrigation systems. To Learn design principles of Diversion Head works. To Study the classification of dam their importance, applications. 										
Course Outco	mes: On successful	comp	letior	$\frac{1}{1}$ of t	his course,	the students will be	e able to			
CO 1Understand thoroughly theories and principles governing the hydrologic cycle.CO 2Estimate the flood discharge using different methods.										
CO 3 Est car	Estimate consumptive usage of irrigation water for different crops and to design irrigation canals and canal network.									
CO 4 Kn	ow the factors effec	ting the	e sele	ection	n of site an	d design of dams an	d reservoirs.			
CO 5 An	Analyse the stability of gravity and earthen dams.									

<u>UNIT-I</u>

Introduction

Definition of hydrology - Hydrologic cycle; Precipitation: Types and forms of precipitation,

Measurement - Recording and non-recording type of rain gauges- Average depth of precipitation -

Double mass curve; Mean Precipitation: Arithmetic Mean, Thiessen Polygon and Isohyet Methods;

Evaporation, Transpiration, Evapotranspiration - Factors affecting - Estimation and Measurement

– Methods to Reduce evaporation.

<u>UNIT – II</u>

Infiltration

Factors affecting Infiltration, Measurement of Infiltration, Infiltration Curve and Infiltration Indices; Runoff: Components – Factors affecting – Features of hydrograph – Separation of base flow –Direct runoff hydrograph, Unit hydrograph; Flood Estimation: Introduction– Methods– Rational Method & Empirical formulae.

<u>UNIT – III</u>

Irrigation

Necessity and importance, principal crops and crop seasons – Types - Methods of application - Consumptive use - Estimation of consumptives use - Crop water requirement - Duty and delta - Factor affecting duty - Irrigation efficiencies - Water logging - Standard of quality for irrigation - Crop rotation.

Flow irrigation

Classification of canals - Design of Irrigation canals by Kennedy's and Lacey's theories.

<u>UNIT – IV</u>

Diversion head works - Weirs and barrages - Layout of diversion head works – Components - Causes and failure of hydraulic structures. Types of dams - Merits and demerits - Factors affecting selection of type of dam - Factors governing selecting site for dam - Types of reservoirs.

<u>UNIT – V</u>

Storage head works

Gravity dams: Forces acting on gravity dam - Causes of failure of a gravity dam - Elementary profile and practical profile of a gravity dam - Limiting height of a low gravity dam - Drainage galleries.

Types of Earth dams: Causes of failure of earth dam - Criteria for safe design of earth dam.

Text Books:

- Mays, L.W. and K. Tung, "Hydro systems Engineering and Management", McGraw-Hill Inc., New York, 1992.
- 2. P. Jayarami Reddy, "A Text Book of Hydrology", Laxmi Publications, Third edition, 2016.
- 3. H.M. Raghunath, "Hydrology: Principles, Analysis, Design: Principles, Analysis and Design", New Age International Pvt Ltd, Third edition, 2015.
- 4. S.R. Sahasrabudhe, "A Textbook of Irrigation Engineering", S.K. Kataria & Sons, 2013

- Aswathanarayana U., "Water Resources Management and the Environment", A.A. Balkema Publishers, 2001
- 2. K.C.Parti, "Hydrology and Water Resources Engg", Narosa Publishers, 2001.

Course Title	Founda	Foundation Engineering				B.Tech CE V Sem (R20)		
Course Code	Category	He	Hours/Week Credits Maximum				Marks	
2001502	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
	(FCC)	3	0	0	3	40	60	100
	Mid Exam Durat	ion: 1	.5 Hrs			End Exam Dura	tion: 3 H	Irs
Course Objectiv	ves:							
 To emphasize the importance of soil investigations including destructive and non-destructive methods 								
• To explai	in how earth pressur	e theo	ory is in	nportar	nt in retaining	g structure design		
• To explain various for	• To explain the concept of bearing capacity and how to estimate the safe bearing capacity for various foundation systems including settlement consideration							
• To explain in what circumstances pile is needed and how do analysis the pile and pile group under various soil conditions								
To study	the types of slopes t	for dif	ferent c	conditi	ons			
Course Outcom	es: On successful co	omple	tion of	this co	urse, the stud	dents will be able to		
CO1 Carry ou	CO1 Carry out soil investigation for any civil engineering construction							
CO 2 Analyze	2 Analyze earth retaining structures for any kind of soil medium							
CO 3 Perceive	e knowledge to desig	gn sha	llow an	nd deep	foundations	6		
CO 4 Determi	ne bearing capacity	and fo	oundati	on sett	lement			
CO 5 Underst	and various methods	s for c	omputa	ation of	f factor of sa	fety for any type of slo	pe condi	tion

<u>UNIT-I</u>

Site Investigation & Sub-Soil Exploration

Site reconnaissance – Depth of exploration – Lateral extent of exploration – Test pits – Auger borings – Wash borings – Soil samplers – Penetration test – Standard penetration test (SPT) – Geophysical methods – Seismic refraction and electrical resistivity methods – Sub soil investigation reports - Plate load test – Pressure meter.

<u>UNIT – II</u>

Earth Pressure Theories and Retaining Walls

Active and passive earth pressures in cohesion less and cohesive soils (with and without surcharge, horizontal and inclined surfaces) - Rankine's theory of earth pressure – Earth pressures in layered soils – Coulomb's earth pressure theory – Culmann's and Rebhann's graphical method. Types of retaining walls – Stability of gravity and cantilever retaining walls – Drainage in retaining walls.

<u>UNIT – III</u>

Bearing capacity of shallow foundations

Types of foundations – Depth of foundation – Terzaghi's bearing capacity equation – Bearing capacity of strip, square, circular, rectangular footings – Meyerhof's theory – Skempton's method – Brinch Hansen's method – Effect of ground water table on bearing capacity – Bearing capacity from building codes – Tolerable settlements – Settlement analysis.

<u>UNIT – IV</u>

Pile Foundations

Types of piles – Load carrying capacity of piles based on Static pile formulae – Dynamic pile formulae – Pile Load tests - Load carrying capacity of pile groups in sands and clays – Settlement of pile groups - Negative skin friction.

<u>UNIT – V</u>

Earth Slope Stability

Infinite and finite earth slopes – Types and causes of failures – Factor of safety of infinite slopes – Stability analysis by Swedish arc method, Standard method of slices, Bishop's simplified method – Taylor's stability number- Stability of slopes of earth dams under different conditions.

Text Books:

- Professor John N. Cernica, P.E., Ph.D., "Geotechnical Engineering: Soil Mechanics", by John Wiley & Sons, Inc., New York.
- 2. B C Punmia, Ashok Kumar Jain & Arun Kumar Jain "Soil Mechanics & Foundation Engineering", Laxmi Publications, New Delhi.
- Dr. K R Arora "Soil Mechanics & Foundation Engineering", Standard Publishers Distributers, New Delhi.
- 4. Braja M. Das, "Fundamentals of Geotechnical Engineering", Cengage Learning, USA.

- Joseph E. Bowles "Foundation analysis & Design", Tata McGraw-Hill Companies, Inc. New York.
- R. Whitlow, "Basic Soil Mechanics", Addison Wesley Longman Limited, Edinburgh Gate, England.

Course Title	Concrete Technology					B.Tech CE V Sem (R20)		
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks		
2001503	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
	Mid Exam Duration	: 1.5 H	lrs			End Exam Dura	tion: 3 H	Irs
Course Objectiv	ves:							
• To understand the different types of cements & admixtures available in construction industry and their properties.								
• To understand the basic requirement so of aggregate used for concrete and properties of fresh concrete.								
To under	stand the durability prop	perties	of co	ncret	e.			
To under	stand the mechanical pr	opertie	es of c	concr	ete.			
To design	n a concrete mix for var	ious gi	ades	of co	ncrete			
Course Outcom	es: On successful comp	letion	of thi	s cou	rse, the stud	lents will be able to		
CO1 Know th	CO 1 Know the types of cements, admixtures available in market and their properties.							
CO 2 Evaluate	2 Evaluate properties of aggregates and fresh concrete.							
CO3 Know a	bout elasticity, shrinkag	e, cree	p and	l dura	ability of co	ncrete.		
CO 4 Evaluate	e properties of hardened	concr	ete.		•			
CO 5 Design	he concrete mix propor	tions b	y sui	ng A	CI and IS m	ethods.		

<u>UNIT-I</u>

Cements and Admixtures

Portland cement – Chemical composition – Hydration, Setting of cement – Types of cements -Tests on physical properties – Different grades of cement – Introduction to Mineral and chemical admixtures, their functions, uses and dosages.

<u>UNIT – II</u>

Aggregates & Fresh Concrete

Concrete aggregates: Classifications – Strength and other mechanical properties – Moisture content and its effects – Deleterious substances – Alkali-Aggregate reaction – Grading curves and grading requirements – Gap-graded aggregate.

Fresh concrete: Workability – Factors affecting workability – Measurements of workability – Effect of time and temperature – Segregation – Bleeding – Mixing of concrete – vibration of concrete – Pumped concrete, underwater concrete, pre-placed concrete, Ready mixed concrete– Pumped concrete.

<u>UNIT – III</u>

Properties of Concrete

Elasticity, Shrinkage and Creep: Modulus of elasticity – Dynamic modulus – Poisson's ratio– Shrinkage and its effects – Creep of concrete – Factors affecting creep.

Durability: Introduction, types of durability tests – Chemical attack of Concrete – Efflorescence – Air entrained concrete – Thermal properties – Resistance of concrete to fire.

<u>UNIT – IV</u>

Hardened Concrete

Curing of concrete: Methods of curing – Maturity - Influence of temperature – Steam curing at atmospheric pressure – High pressure steam curing

Hardened concrete: Compression tests – Flexure test –Splitting test – Rebound Hammer test– Ultrasonic pulse velocity test, Digital Image Processing.

$\underline{UNIT} - \underline{V}$

Mix Design of Concrete

Concrete Mix Design and Quality Control: Basic consideration – Objectives - Principles of Mix Proportioning-Factors in the choice of properties– Procedure for ACI & IS methods of mix design - Simple example of mix design.

Text Books:

- 1. A M Neville, "Properties of Concrete", Pearson Education India, 5th edition, 2012.
- P.K.Mehta and J.M.Monteiro, "Concrete: Micro Structure, Properties and Materials", McGraw Hill Publishers, 4th edition, 2013.
- 3. M S Shetty "Concrete Technology", S. Chand Publishers, New Delhi.
- 4. A R Santha Kumar "Concrete Technology", Oxford University Press, New Delhi.

- 1. M L Gambhir "Concrete Technology", Tata McGraw-Hill Companies, Inc. New York.
- 2. P K Mehta and J M Monteiro "Concrete: Micro structure, Properties and Materials", Tata McGraw-Hill Companies, Inc. New York.
- 3. Krishna Raju "Design of Concrete Mix", CBS Publishers, New Delhi.
- 4. J Prasad and C G K Nair "Non-Destructive Test and Evaluation of Materials", Tata McGraw-Hill Companies, Inc. New York.

Course Title	Optimization T Engi	B.Tech CE V Sem (R20)						
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks		
2001504	Professional Elective (PEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 H								Hrs
Course Objectiv • Understan	es: Id the importance optimiz	ation	to va	rious	practice prob	blems and solve the	m simple	e

- mathematical techniques.
- The various optimization techniques for single variable optimization problem
- Direct search methods and Gradient methods for multi variable un constraint Optimization problems

Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Apply the concept of basic mathematics for various optimization techniques.					
CO 2	Know about one-dimensional optimization techniques civil engineering problems.					
CO 3	Understand the constrained and unconstrained optimization techniques.					
CO 4	Apply the dynamic programming techniques to solve problem in civil engineering.					
CO 5	Appraise the integer programming techniques.					

UNIT-I

Introduction to Optimization

Engineering applications, Statement of optimization, classification of optimization, Classical optimization: Single variable, multi variable with and without optimization. Multi variable with inequality constraints Khun -Tucker conditions.

<u>UNIT – II</u>

One Dimensional Minimization

Uni-modal Function, Unrestricted search, Exhaustive search, Dichtomous search, Interval Halving method, Fibonici and golden bisection Method, Newton and Quasi Newton method.

<u>UNIT – III</u>

Non-Linear – Unconstrained optimization-I

Classification, scaling of design variables, Random search methods, Universate search, pattern Directions, Hook Jeeves, Powel method, Rosenbrock method.

UNIT – IV

Non-Linear – Unconstrained optimization-II

Characteristics, Random search methods, complex method, sequential linear programming, Zoutendijk's method, Penality method.

$\underline{UNIT} - \underline{V}$

Dynamic programming:

Multi stage decision processes, concept of sub optimization, few examples problems **Integer programming:** Gomory's cutting plane method, branch and bound method.

Text Books:

- David G. Luerbeggan, "Introduction to Linear and Non Linear Programming", Addison Wesley Publishing Co. 1973.
- 2. Hadley G. "Nonlinear and dynamic programming" Addison Wesley Publishing Co. 1964.
- 3. HarndyA.Tahh. "operations Research, An Introduction", Macmillan Publishers Co. NewYork,1982.
- 4. J.K Sharma: Operations Research, S Chand ,9th edition, New Delhi

- Cordan C.C. Beveridge and Robert S. Schedther, "Optimization, Theory and Practice" McGraw Hill Co.1970.
- SS. Rao, "Engineering Optimization theory and practice", New age international 3rd edition 2013.
- 3. Jasbir.S. Arora, "Introduction to Optimum Design" Mc Graw hill International edition, 4th edition Singapore.
- **4.** M. C. Joshi, K. M. Moudgalya, "Optimization Techniques theory and practice", Narosa Publications
- 5.

Course Tit	e Advanced S	Advanced Structural Analysis					B.Tech CE V Sem (R20)		
Course Cod	e Category	Hou	Hours/Week Credits			Maximum Marks			
2001505	Professional Elective (BEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(FEC)	3	0	0	3	40	60	100	
	Mid Exam Durati	on: 1.5	5 Hrs			End Exam Du	iration:	3 Hrs	
Course Obj	ectives:								
• To introduce stiffness method and flexibility method for analysis of statically									
indet	erminate structures.								
• To ur	derstand the basics of fi	nite ele	ement	meth	od and appli	cation to structura	al analysi	s.	
• Use a	• Use and/or develop structural analysis software to analyze complicated structural systems.								
• Interp	ret the output from con	nputer-	based	lanal	yses for the	purpose of structu	ural desig	gn	
Course Out	comes: On successful c	omple	tion o	f this	course, the	students will be a	able to		
CO1 Iden	tify static and dynamic	indete	rmina	acy of	structure a	nd can apply mat	rix metho	ods	
to a	to analyse the structures.								
CO 2 Ana	Analyse the continuous beams using stiffness and flexibility methods.								
CO 3 Ana	Analyse two dimensional portable frames using stiffness and flexibility methods.								
CO 4 Ana	yse two-dimensional p	in-join	ted tr	usses	using stiffn	ess and flexibility	y method	ls.	
CO 5 Tran	sform local coordinate	systen	n to g	lobal	coordinate s	system in matrix	methods.		

<u>UNIT-I</u>

Introduction to Matrix methods

Introduction, coordinate systems, displacement and force transformation matrices, element and structure stiffness matrices, Element and structure flexibility matrices, equivalent joint loads, stiffness, and flexibility approaches.

<u>UNIT – II</u>

Matrix methods for beams

Analysis of continuous beams by flexibility method and stiffness method with and without settlement of supports.

<u>UNIT – III</u>

Matrix methods for Plane Frames

Analysis of 2-D frames by Flexibility matrix methods.

<u>UNIT – IV</u>

Matrix methods for Plane Frames
Analysis of 2-D frames by Stiffness matrix methods.

$\underline{UNIT} - \underline{V}$

Matrix methods for Plane truss problems

Analysis of 2-D trusses by flexibility method and stiffness method.

Text Books:

- 1. G. S. Pandit and S. P. Gupta, "Structural Analysis A Matrix Approach", McGraw Hill Education; 2nd edition,2008.
- 2. M W Weaver and Gere, "Matrix Analysis of framed Structures", Springer, 1990.
- 3. S.S. Bhavikatti, "Matrix Methods of Structural Analysis", Dreamtech Press, 2019
- 4. S. Ramamrutham, R. Narayan, "Theory of Structures", 9th Edition, 2014.

- 1. Devdas Menon, "Advanced Structural Analysis", Narosa Publishing House, 2015.
- 2. Asslam Kassimali, "Matrix Analysis of Structures", Cengage Learning, USA. 2012.
- 3. C.K Wang, "Analysis of Indeterminate Structures", Tata McGraw-Hill Companies, Inc. New York, 1992.
- 4. T.N.Gayl, "Matrix structural analysis", Tata Mc Graw Hill Company.

Course Title	Remote Sen	Remote Sensing & GIS							
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks			
2001506	Professional Elective (PEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
	Mid Exam Duration: 1.5 Hrs End Exam Duration: 3 Hrs								
~ ~									

Course Objectives:

The purpose of this course is to provide an understanding of physical concepts and underlying various engineering and technological applications in remote sensing. In addition, the course is expected to understand the basic principles of remote sensing and its applications.

Course	Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Perceive the basics of remote sensing						
CO 2	Pick out the characteristics of the instruments used for remote sensing						
CO 3	Analyze the need and standard techniques used for image processing						
CO 4	Perceive the basics of GIS						
CO 5	Study the areas of application of Remote Sensing and GIS						

UNIT-I

Remote Sensing – 1

Introduction to Basic Concepts: Definition – Physics of Remote Sensing – Electro Magnetic Radiation (EMR) – Interaction of EMR with atmosphere, Earth surface features – Vegetation, soils, water – Spectral reflectance curves – Atmospheric windows

<u>UNIT – II</u>

Remote Sensing – 2

Remote Sensing Systems: Platforms: Introduction – Types – Satellites and orbits, - Spectral, radiometric and spatial resolutions, temporal resolution of satellites - Some remote sensing satellites and their features.

<u>UNIT – III</u>

Image Processing Techniques

Digital Image Processing: Image enhancement – Contrast stretch, Spatial filtering and edge enhancement; Classification – Supervised unsupervised classification – Visual image interpretation techniques.

UNIT – IV

Geographical Information Systems (GIS)

Basic Principles – Definition – Components – Data Structures – Raster and Vector formats – Functioning of GIS – Data Input – Data Manipulation – Data Retrieval – Spatial Data Analysis – Computational Analysis Methods (CAM) – Visual Analysis Methods (VAM) - Data Display – Data Base Management Systems

$\underline{UNIT}-\underline{V}$

Remote Sensing Applications

Remote Sensing Applications: Water resources - Drought Assessment - Environmental Monitoring.

Text Books:

- 1. Thomas Lillesand, Ralph W Kiefer and Jonathan Chipman, "Remote Sensing and Image Interpretation", John Wiley & Sons, India.
- 2. M Anji Reddy, "Remote Sensing & GIS", B.S Publications, Hyderabad.
- 3. C P Lo and Albert K W Yeung, "Concepts and Techniques in Geographical Information Systems", Prentice Hall of India, New Delhi.
- 4. Tor Bernhardsen, "Geographic Information systems An Introduction", Wiley India Publication, 3rd Edition, 2010.

- 1. Floyd F Sabins Jr., "Remote Sensing Principles and Interpretation", Freeman and Co., San Francisco.
- J R Jensen, "Remote Sensing of the Environment: An Earth Resource Perspective", Prentice Hall of India, New Delhi.
- 3. Michael N. Demers, "Fundamentals of Geographic Information systems", 4th Edition, Wiley Publishers, 2012.
- Basudeb Bhatta, "Remote Sensing and GIS", Oxford University Press, 2nd Revised Edition, 2011

ourse Title	Modern	ı Con	trol 7	Гheo	ry	B. Tech. EEE Open Elective - 1			
Course Code	Category	Ηοι	ırs/W	/eek	Credits	Maximum Marks			
200E201	Open Elective	Open Elective (OEC)LT30		Р	С	Continuous Internal Assessment	End Exam	End Total xam	
	(OEC)			0	3	40	60	100	
Mid Exam Duration: 1Hr30M						End Exam Duration: 3Hrs			

Course Objectives: Students are able to learn the State Space, Describing function, phase plane and stability analysis including controllability and observability.

Course Outcomes: On successful completion of this course, the students will be able to,

CO 1	Understand the concept of State Space Techniques
CO 2	Analyze the stability of linear and nonlinear Systems
CO 3	Construct the state model of Linear Time Invariant systems and Lyapunov functions for nonlinear systems
CO 4	Determine Eigen values state transition matrix and examine the controllability and observability of linear time invariant systems
CO 5	Design state feedback controller and observer

<u>UNIT – I</u>

State variable descriptions: Concepts of state, state variables, state vector, state space model, representation in state variable form, phase variable representation.

<u>UNIT – II</u>

Solution of State Equations: diagonalization –state transition matrix – properties - .solution of state equations of homogeneous and non-homogeneous systems.

<u>UNIT – III</u>

Controllability and Observability: Definition of controllability – controllability tests for continuous linear time invariant systems – Definition of observability – observability tests for continuous linear time invariant systems,

<u>UNIT – IV</u>

Design of Control Systems: Introduction, Pole placement by state feedback, Full order and reduced order observers,

 $\underline{UNIT} - \underline{V}$

Stability: Introduction, equilibrium points – stability concepts and definitions – stability in the sense of Lyapunov - stability of linear system – methods of constructing Lyapunov functions For non-linear system : Krasovskii's method – Variable gradient method.

Text Books

- Modern Control System Theory by M. Gopal, New Age International Publishers, 2nd edition, 1996.
- 2. Control System Engineering by I. J. Nagarath and M. Gopal, New Age International (P) Ltd. **<u>Reference Books</u>**
- 1. Modern Control Engineering by K. Ogata, Prentice Hall of India, 3rd Edition, 1998.
- 2. Systems and Control by Stainslaw, H. Zak, Oxford Press, 2003.
- 3. Digital Control and State Variable Methods by M. Gopal, TMH, 1997.

Course Title	Programr Nume	ning l rical	Funda Comj	amen putati	tals for ons	B. Te Open	ech. EEE Elective ·	- I		
Course Code	Category	Hou	ırs/W	eek	Credits	Maxim	Maximum Marks			
200E202	Open Elective	L	Т	FPCContinuous Internal AssessmentEx		End Exam	Total			
	(OEC)	(OEC) <u>3 0 0 3</u>		3	40	60	100			

Mid Exam Duration: 1Hr30M

End Exam Duration: 3Hrs

Course Objectives: The main objective of the course is to make the students familiar with scripts, functions, control flow and plotting and use them to solve various engineering problems.

Course Outcomes: On successful completion of this course, the students will be able to,

CO 1	Understand basic features, arrays and symbolic algebra.
CO 2	Analyze various control flow structures, interpolation and curve fitting
CO 3	Solve linear equations, Polynomials
CO 4	Plot two-dimensional and three-dimensional graphics

<u>UNIT-I</u>

Basics Fundamental Features: Basic features, script M-files, code cells, arrays creation, addressing and array operations; multi dimensional arrays.

UNIT-II

Control Flow: Arithmetic & Logical operators, control flow - if, if-else, for, while, switch case constructions and functions.

<u>UNIT-III</u>

Mathematical Operations: Matrix algebra and solutions to systems of linear equations, polynomials, Numerical integration, numerical differentiation

<u>UNIT-IV</u>

Graphics & Numerical techniques: Two-dimensional graphics, basics of three-dimensional graphics, interpolation, curve fitting.

<u>UNIT-V</u>

Symbolic Mathematics: Symbolic algebra, equation solving, differentiation and integration. <u>Text Books</u>

- 1. Hanselman and Littlefield, "Mastering MATLAB 7", Pearson Education Etter,
- 2. Kuncickly, Hull, "Introduction to MATLAB 6", Pearson Education.

Course Tit	e Introduc	ction to l V	Hybrid ehicles	B.Tech ME V Sem				
Course Co	le Category	He	ours/We	ek	Credits	Maxin	1um Mark	(S
20OE301	OEC-I	L	Т	Р	С	ContinuousEndInternalExam		Total
		3	0		3	40	60	100
Mi	d Exam Duration:	90 Min	utes		E	and Exam Durat	tion: 3Hrs	1
Course Obje	ctives:							
. The objectiv	ves of this course are	e to						
 Provid 	e good foundation	on hybric	and ele	ectrical v	vehicles.			
• To ac	dress the underlyi	ng conc	epts an	d meth	ods behind	power transmis	sion in hy	ybrid and
electri	cal vehicles.							
• Famili	arize energy storage	e system	s for ele	ctrical a	nd hybrid tra	insportation.		
• To dea	ign and develop ba	sic scher	nes of el	lectric v	ehicles and h	ybrid electric ve	hicles.	
Course Outc	omes: On successfu	l comple	etion of t	this cou	rse, the stude	nts will be able t	0	
CO1 Use	working of hybrid a	and elect	ric vehic	cles.				
CO 2 Cho	ose a suitable driv	e schem	e for de	evelopin	g an hybrid	and electric vel	hicles depe	ending on
reso	urces.							_
CO 3 Dev	elop the electric pro	pulsion	UNIT ar	nd its co	ntrol for app	lication of electri	ic vehicles	
CO 4 Cho	ose proper energy s	torage sy	stems fo	or vehic	le application	ns.		
CO 5 Des	gn and develop bas	ic schem	es of ele	ectric ve	hicles and hy	ybrid electric veh	icles.	

<u>UNIT – I</u>

Electric Vehicle Propulsion And Energy Sources

Introduction to electric vehicles, vehicle mechanics - kinetics and dynamics, roadway fundamentals propulsion system design - force velocity characteristics, calculation of tractive power and energy required, electric vehicle power source - battery capacity, state of charge and discharge , specific energy, specific power, Ragone plot. battery modeling - run time battery model, first principle model, battery management system- soc measurement, battery cell balancing. Traction batteries - nickel metal hydride battery, Li-Ion, Lipolymer battery.

<u>UNIT – II</u>

Electric Vehicle Power Plant And Drives

Introduction electric vehicle power plants. Induction machines, permanent magnet machines, switch reluctance machines. Power electronic converters-DC/DC converters - buck boost converter, isolated DC/DC converter. Two quadrant chopper and switching modes. AC drives-PWM, current control method. Switch reluctance machine drives - voltage control, current control.

<u>UNIT – III</u>

Hybrid And Electric Drive Trains

Introduction hybrid electric vehicles, history and social importance, impact of modern drive trains in energy supplies. Hybrid traction and electric traction. Hybrid and electric drive train topologies. Power flow control and energy efficiency analysis, configuration and control of DC motor drives and induction motor drives, permanent magnet motor drives, switch reluctance motor drives, drive system efficiency.

UNIT - IV

Electric And Hybrid Vehicles - Case Studies

Parallel hybrid, series hybrid -charge sustaining, charge depleting.Hybrid vehicle case study – Toyota Prius, Honda Insight, Chevrolet Volt. 42 V system for traction applications. Lightly hybridized vehicles and low voltage systems. Electric vehicle case study - GM EV1, Nissan Leaf, Mitsubishi Miev.Hybrid electric heavy duty vehicles, fuel cell heavy duty vehicles.

$\underline{UNIT} - \underline{V}$

Electric And Hybrid Vehicle Design

Introduction to hybrid vehicle design.Matching the electric machine and the internal combustion engine. Sizing of propulsion motor, power electronics, drive system. Selection of energy storage technology, communications, supporting subsystem.Energy management strategies in hybrid and electric vehicles - energy management strategies- classification, comparison, implementation.

Text Books:

- 1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, 2/e, CRC Press, 2003.
- Amir Khajepour, M. Saber Fallah, AvestaGoodarzi, Electric and Hybrid Vehicles: Technologies, Modeling and Control - A Mechatronic Approach, illustrated edition, John Wiley & Sons, 2014.
- 3. MehrdadEhsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.

- 1. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.
- John G. Hayes, G. AbasGoodarzi, Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles, 1/e, Wiley-Blackwell, 2018

Course 7	Title		Rapid	Prototy	B. Tech. ME V Sem				
Course C	Code	Category	He	ours/We	ek	Credits	Maximum Marks		
200E3	02	OEC-I	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0		3	40	60	100
Mid Exam Duration: 90 Minutes End Exam Duration: 3Hrs									
Course Objectives:									
. The object	. The objectives of this course are to								
• Farr	niliarize	techniques for	process	ing of C	AD mo	dels for rapid	l prototyping.		
• Exp	lain fun	damentals of r	apid pro	totyping	technic	lues.			
• Den	nonstrat	e appropriate t	ooling f	or rapid	prototy	ping process.			
• Foc	us Rapio	d prototyping t	echniqu	es for re	verse er	igineering.			
Train Vario	us Pre -	- Processing, P	rocessin	ig and Po	ost Proc	essing errors	in RP Processes		
Course Ou	tcomes	: On successfu	l comple	etion of t	this cou	rse, the stude	nts will be able to)	
CO 1	Use tec	chniques for pr	ocessing	g of CAI) model	s for rapid pr	ototyping.		
CO 2	Implen	nent fundamen	tals of ra	apid prot	otyping	techniques.			
CO 3	Choose	e appropriate to	ooling fo	or rapid p	prototyp	ing process.			
CO 4	Create	rapid prototyp	ing tech	niques fo	or rever	se engineerin	g.		
CO 5	Identify	y Various Pre -	- Proces	sing, Pro	ocessing	and Post Pro	ocessing errors in	RP proces	ses.
		-		U	U			*	

<u>UNIT - I</u>

Introduction to RP Introduction

Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP.

RP Software: Need for RP software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant, Velocity2, VoXim, SolidView, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP.

<u>UNIT - II</u>

Solid and Liquid Based RP Systems

Solid and Liquid Based RP Systems: Stereolithography (SLA): Principle, Process, Materials, Advantages, Limitations and Applications. Solid Ground Curing (SGC): Principle, Process, Materials, Advantages, Limitations, Applications. Fusion Deposition Modeling (FDM): Principle, Process, Materials, Advantages, Limitations, Applications. Laminated Object Manufacturing (LOM): Principle, Process, Materials, Advantages, Limitations, Applications.

<u>UNIT - III</u>

Powder Based RP Systems Powder Based RP Systems

Principle and Process of Selective Laser Sintering (SLS), Advantages, Limitations and Applications of SLS, Principle and Process of Laser Engineered Net Shaping (LENS), Advantages, Limitations and Applications of LENS, Principle and Process of Electron Beam Melting (EBM), Advantages, Limitations and Applications of EBM.

Other RP Systems: Three Dimensional Printing (3DP): Principle, Process, Advantages, Limitations and Applications. Ballastic Particle Manufacturing (BPM): Principle, Process, Advantages, Limitations, Applications. Shape Deposition Manufacturing (SDM): Principle, Process, Advantages, Limitations, Applications.

<u>UNIT - IV</u>

Rapid Tooling

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (RE): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development.

$\underline{UNIT} - \underline{V}$

Errors in RP Processes

Errors in RP Processes: Pre-processing, processing, post-processing errors, Part building errors in SLA, SLS, etc.

RP Applications: Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse Engineering, Medical Applications of RP.

Text Books:

- 1. Chee Kai Chua and Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" Fifth Edition, World Scientific Publications, 2017.
- Ian Gibson, David W Rosen, Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, Second Edition, 2010.

Reference Books:

 Frank W.Liou, "Rapid Prototyping & Engineering Applications", CRC Press, Taylor & Francis Group, 2011.

Course Title	e Design for	·Manuf	acturing	B.Tech ME V Sem					
Course Cod	e Category	Ho	ours/We	ek	Credits	Maximum Marks			
20OE303	OEC-I	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0		3	40	60	100	
Mie	l Exam Duration:	90 Min	utes		E	and Exam Dura	tion: 3Hrs		
Course Objec	tives:								
. The objectiv	es of this course are	e to							
Discuss manufa	• Discuss various factors influencing the manufacturability of components and use of tolerance s in manufacturing								
 Explain 	n various considera	tions in o	casting,	welding	, forging and	machining proc	cesses.		
Demor	strate on the desig	n factors	depend	lent on t	he assembly	methods.			
• Teach	he principles and i	rules of o	design fo	or assen	nbly.				
Course Outco	mes: On successfu	l comple	tion of t	this cour	rse, the stude	nts will be able	to		
CO1 Appl	y the importance of	f Design	for Mar	nufactur	ing and Asse	mbly.			
CO 2 Exan	nine the form desig	n factors	with th	e help o	f Case study.				
CO 3 Evalu	ate how the factor	of redes	ign affe	cts the p	roduct life c	ycle.			
CO 4 Make	e use of DFA method	ods prop	osed by	Boothro	oyd and Dew	hurst.			
CO 5 Anal	yse the importance	of Desig	gn for M	anufact	uring and As	sembly.			

<u>UNIT - I</u>

Introduction to DFM

Significance of design, qualities of a designer and Design factors, Systematic working plan, The engineering problem to be solved, The basic design, Factors influencing choice of materials and the factors influencing manufacturing Process Capability Mean, Median, Variance, Mode, Standard Deviation, Normal Distribution and Process capability metrics, Process Capability, Tolerances-symbols and definition, Tolerances relevant to manufacturing, assembly and material condition, Tolerance stack- effects on assembly with examples, Methods of eliminating tolerance stack with examples.

<u>UNIT - II</u>

Form Design-Casting and Welding

Influence of loading, Materials, Production methods on form design, Casting considerations, Grey iron castings, Steel castings, Aluminum Casting Requirements and rules for casting, Form design of pressure die castings, Welding considerations welding Processes, Requirements and rules for welding, Redesign of components for casting-pattern-mould- Parting Line, Redesign of components for welding, Case studies in form design-simple problems in form design

<u>UNIT – III</u>

Form Design-Forging and Machining

Forging considerations hammer forging drop forging, Requirements and rules for forging, Choice between casting, forging and welding, Machining considerations Drills, Milling-Keyways, Dwells and Dwelling Procedure Countersunk Head screws Requirements and rules for Machining considerations and Reduction of machined areas Redesign of components for Forging, Redesign of components for Machining, Simplification by separation and Simplification by amalgamation, Case studies.

UNIT - IV

Introduction to DFA

DFA, Introduction, Distinction between assembly methods and processes, Factors Determining assembly methods and processes, Success and failure-Causes of failure, Product Design factors independent of methods and processes, Introduction-Number of operations in the product, Assembly Precedence, Standardization, Design factors dependent on Assembly methods, Introduction-Single Station Assembly Line Assembly, Hybrid Systems, Manual Assembly lines, Flexible Assembly lines, Design factors dependent on Assembly processes, Factors Influencing Production rate to Facility Ratio- Parts Presentation, Manual Assembly, Dedicated Assembly, Transportation, Separation and Orientation-Flexible Assembly, Gripping, Transferring, Part Insertion, Failures and Error Recovery.

<u>UNIT - V</u>

Design For Assembly Methods

Approaches to design for assembly and Introduction, Approaches based on design principles and rules, Example DFA method using Design Principles, DFA Systems employing Quantitative evaluation procedures, IPA Stuttgart Method, DFA Methods employing a Knowledge based approach, Knowledge representation Computer Aided DFA methods, Part model, Feature, Processing. Assembly measures like Qualitative and Quantitative measures, Boothroyd and Dewhurst DFA method. Redesign of a simple product, Small consumer product and Fastener solution redesign using symmetry, Case Studies Designing of a disposal valve, Design of a lever-arch file mechanism.

Text Books:

- 1. Harry Peck., "Design for Manufacture", Pittman Publications, 1983.
- 2. Alan Redford and chal, "Design for Assembly-Principles and Procedures", McGraw Hill International Europe, London, 1994.

- RobertMatousek, "Engineering Design A Systematic Approach", Blackie &sons Ltd., 1963.
- James G.Bralla, "Hand Book of Product design for Manufacturing", McGraw Hill Co., 1986.
- 3. Swift, K.G., "Knowledge Based Design for Manufacture", Kogan Page Ltd., 1987

Course Title	Energ	y Syste	ems in E	B.Tech ME V Sem						
Course Code	Category	He	ours/We	eek	Credits	Maximum Marks				
20OE304	OEC-I	L	Т	Р	С	Continuous Internal Assessment	End Exam Tota			
		3	0		3	40	60	Total		
Mid Ex	E	nd Exam Durat	tion: 3Hrs							
Course Objectiv	es:									
. The students completing this course are expected:										

- Familiarize the sources of energy, power plant economics and environmental aspects.
- Outline the working components of different power plant.
- Explain renewable energy sources; characteristics, working principle, classify types, layouts, and plant operations.
- Impart types of nuclear power plants, and outline working principle and advantages and hazards.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Describe working components of a steam power plant.
CO 2	Understand the various elements of hydroelectric power plant and their types.
CO 3	Illustrate the working mechanism of Nuclear and Gas turbine power plants.
CO 4	Summarize types of renewable energy sources and their working principle.
CO 5	Analize power plant economics, and environmental aspects.

<u>UNIT – I</u>

Introduction to different Sources of Energy.

STEAM POWER PLANT: Layout of Modern Steam Power Plant, working of different

circuits-selection of site- Coal Storage- Classification of coal handling and Ash handling

systems.

<u>UNIT – II</u>

HYDRO ELECTRIC POWER PLANT: Selection of Site for Hydro Electric Power Plant -

Hydrological cycle – Hydrographs - flow duration curve - mass curve – classification of dams, spill ways and surge tanks.

HYDRO PROJECTS AND PLANT: Classification of Hydro Electric Power Plants -

Typical layout – plant auxiliaries – plant operation - pumped storage plants.

<u>UNIT – III</u>

NUCLEAR POWER PLANT: Nuclear fuel – breeding and fertile materials – Nuclear reactor –reactor operation.

TYPES OF REACTORS: Pressurized Water Reactor, Boiling Water Reactor, Sodium-

Graphite Reactor, Fast Breeder Reactor, Homogeneous Reactor and Gas Cooled Reactor -Radiation hazards and shielding –radioactive waste disposal.

GAS TURBINE POWER PLANT: Introduction – Plant Layout – Classification – Working of Simple Gas Turbine Power Plant– Constant pressure and constant volume Gas Turbine Power Plants –Combination of GasTurbine Cycles.

<u>UNIT-IV</u>

POWER FROM NON-CONVENTIONAL SOURCES: Utilization of Solar- Collectors-Principle

of Working, Wind Energy- types - HAWT, VAWT -Tidal Energy.

Direct energy conversion: Solar energy, Fuel cells, MHD generation.

UNIT - V

POWER PLANT ECONOMICS: Definitions of connected load, Maximum demand, demand factor, average load, load factor, diversity factor, utilization factor, Plant capacity factor and plant use factor - Types of loads -Load curve and load duration curve - general arrangement of power distribution

Different types of tariff for Electrical energy –Cost of generation and fixed cost, semi fixed cost, running cost, depreciation methods, and straight line methods Simple problems.

Text Books:

1. P.K. Nag, Power Plant Engineering, 3/e, TMH, 2013.

2. Arora and S. Domkundwar, A course in Power Plant Engineering, DhanpatRai& Co

(P) Ltd, 2014

- 1. Rajput, A Text Book of Power Plant Engineering, 4/e, Laxmi Publications, 2012.
- 2. Ramalingam, Power plant Engineering, Scietech Publishers, 2013
- 3. P.C. Sharma, Power Plant Engineering, S.K. Kataria Publications, 2012

Cours	e Title		Smar	t Mater		B.Tech ME V Sem			
Course	e Code	Category	Ho	ours/We	ek	Credits	Maximu	ım Marks	5
200	E305	OEC-I	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0		3	40	60	100
	Mid Ex	am Duration:	90 Min	utes		E	nd Exam Duratio	on: 3Hrs	
Course	Course Objectives:								
. The ob	. The objectives of this course are to								
• I	ntroduce the	he students with	n HBLS	and LB	HS sma	rt materials.			
• E	Expose the	students in sma	art syste	ms deve	lopment	and uses.			
• [Jnderstand	l the working p	rinciple	of smart	actuato	rs and smart	sensors.		
Course	Outcomes	: On successfu	l comple	etion of t	this cou	rse, the stude	nts will be able to		
CO 1	Analyse structures	the role of sma s.	rt mater	ials in d	evelopm	ent of intelli	gent systems and a	adaptive	
CO 2	Compare	polycrystalline	and sin	gle crys	tal piezo	electric mate	erials		
CO 3	Identify t	he influence of	stress o	n charac	teristic	temperatures	in SMA and EAP		
CO4	Evaluate	the role of sma	rt mater	ials in de	evelopm	ent of intelli	gent systems and a	adaptive	
	structures	S.			-			-	
CO 5	Develop	of various sens	ors.						
TINIT									

<u>UNIT - I</u>

Introduction to Smart Materials

Introduction to Smart Materials: What is Intelligence? Artificial intelligence Vs. embedded Intelligence, Definition of smart material, need for smart materials, classifications of smart systems, components of a smart systems, smart system applications, the role of Smart Materials in developing Intelligent Systems and Adaptive Structures.

<u>UNIT - II</u>

High bandwidth - Low strain generating (HBLS) Smart Materials

Piezoelectric Materials – constitutive relationship, electromechanical coupling coefficients, piezoelectric constants, piezoeramic materials, variation of coupling coefficients in hard and soft piezoeramics, polycrystalline vs single crystal piezoelectric materials, polyvinyldene fluoride, piezoelectric composites.

Magnetostrictive Materials – constitutive relationship, magneto-mechanical coupling coefficients, Joule Effect, Villari Effect, Matteuci Effect, Wiedemann effect, Giant magnetostriction in Terfenol-D, Terfenol-D particulate composites, Galfenol and Metglas materials.

<u>UNIT - III</u>

Low bandwidth - High strain generating (LBHS) materials

Low bandwidth - High strain generating (LBHS) materials: Shape Memory Alloys (SMA) – Introduction, Phenomenology, Influence of stress on characteristic temperatures, Modelling of shape memory effect. Vibration control through shape memory alloys. Design considerations, multiplexing embedded NiTiNOL actuators. Electro-active Polymers (EAP)- Introduction, Phenomenology, Influence of stress on characteristic temperatures.

<u>UNIT - IV</u>

Smart actuators

Based on HBLS smart materials: Piezoelectric Actuators – Induced Strain actuation model, Unimorph and Bimorph Actuators, Actuators embedded in composite laminate, Impedance matching in actuator design, Feedback Control, Pulse Drive, Resonance Drive. Magnetostrictive Actuators – Magnetostrictive Mini Actuators, Thermal instabilities, Discretely distributed actuation, Manetostrictive Composites.

Based on LBHS Smart Materials - Shape Memory Alloy based actuators for Shape Control, Electro-active Polymers for Work-Volume Generation.

<u>UNIT - V</u>

Smart sensors:

Sensors based on HBLS Smart Materials - Piezoelectric Sensors Magnetostrictive Sensors Techniques of Self Sensing MEMS Sensors.

Sensors based on LBHS Smart Materials - EAP based sensors, SMA based encoders, Optical Fibre based Sensing.

Text Books:

1. M.V. Gandhi, B.D. Thompson" Smart Materials and Structures" Springer Science & Business Media, 31-May-1992.

- 1. Brian Culshaw, Smart Structures and Materials, Artech House, 2000.
- 2. Gauenzi, P., Smart Structures, Wiley, 2009.

Course	Title	Overv	view of 1	Microco	rs	Open Electives			
Course	Code	Category	Hours/Week			Credits	Maximum Marks		
20OE	2401	OE	L	Т	Р	С	Continuou s Internal Assessment	End Exams	Total
			3	-		3	40	60	100
Mid Exa	Mid Exam Duration: 90MinEnd Exam Duration: 3Hrs								
Course	Objecti	ves:							
To become	me fami	iliar with 8051,	MSP 43	30, PIC a	and AR	M controll	ers.		
Course	Outcon	nes: On success	sful com	pletion of	of this c	ourse, the	students will b	e able to	
CO 1	Understand the types of Microcontrollers.								
CO 2	Define	Define various components and list out various features of microcontrollers.							
CO 3	Descri	be the various	blocks o	f 8051, 1	MSP 43	0, PIC and	ARM microco	ontrollers	

UNIT I

Introduction: Microcontrollers, Vonneumann Vs Harvard, CISC vs RISC, Types of Microcontrollers, Examples of Microcontrollers, Selection of a microcontroller, Microcontroller resources, Applications.

UNIT II

The 8051 Architecture: Introduction, architecture of 8051, pin diagram, internal RAM memory organization, Special Function Registers, external memory interfacing-ROM & RAM, stack, timers and interrupts.

UNIT III

MSP 430 Microcontroller: The Outside View—Pin-Out, The Inside View—Functional Block Diagram, Memory, Central Processing Unit, Memory-Mapped Input and Output, Clock Generator, Exceptions: Interrupts and Resets.

UNIT IV

PIC Microcontrollers:Overview and Features, Architecture Details of PIC 16C6X/7X, I/O Ports, Interrupts, Timer, ADC, Features of 16F8XX series.

UNIT V

ARM Architecture: RISC Design philosophy, ARM Design philosophy, Registers, Program Status Register, Instruction pipeline, Interrupts and vector table.

Text Books:

- 1. Raj Kamal, "Microcontrollers Architecture, Programming, Interfacing and System Design"- Second Edition, Pearson, 2012.
- 2. John H Davis, "MSP 430 Microcontroller Basics", Newnes publishers, 2008.
- **3.** Andrew N.Sloss, Dominic Symes, Chris Wright "ARM System Developer's Guide-Designing and Optimizing system software", Elsevier, 2008.
- 4. Ajay V Deshmukh, "Microcontrollers: Theory and Applications", TMH, 2005.

Reference Books:

- 1. Mazidi Muhammad Ali, Mazidi Janice Gillespie & McKinlayRolin D, *The* 8051Microcontroller and Embedded Systems, 2nd Edition, Pearson Education, 2008.
- 2. Design with PIC Microcontrollers John B. Peatman, Pearson Education, 2005.

Course	Title	Iı	ndustria	l electro		Open Electives			
Course	Code	Category	He	Hours/Week			Maximum Marks		
200E	402	OE	L	Т	Р	С	Continuou s Internal Assessment	End Exams	Total
			3	-		3	40	60	100
Mid Exa	am Dur	ation: 90Min					End Exam	Duration	n: 3Hrs
•] •]	 To understand working of semiconductor devices. To gain the knowledge of AC to DC, AC to AC and DC to DC converters. 								
Course	Outcon	nes: On success	sful com	pletion of	of this c	ourse, the	students will b	e able to	
CO 1	Under	stand the basics	s of Pow	er Electi	ronics.				
CO 2	Learn operati	the details of ion)	power s	emicond	luctor s	witches (C	Construction, C	Characteris	stics and
CO 3	Under	stand the worki	ng of va	rious ty	pes of co	onverters.			
CO 4	Learn how to analyze the converters and design the components of them, under various load types.								
CO 5	Learn	about the contr	ol of var	ious cor	verters				

Unit-I

Power Semiconductor devices: Constructional features, Operating Principle, Characteristics and specification of power semiconductor diode, Power Bipolar Junction transistor (BJT), Thyristors and Triacs, Gate Turn off Thyristors (GTO), Metal oxide semiconductor field effect transistor (MOSFET), Insulate Gate Bipolar transistor (IGBT), Hard and soft switching of Power semiconductors.

Unit-II

AC to DC Convertors: Single Phase uncontrolled rectifier, Single Phase fully controlled rectifier, single phase half controlled bridge rectifier, Operation and analysis of three phase fully controlled bridge converter, Operation and analysis of three phase half controlled converter, Effect of source Inductance on the performance of AC to DC converters, Power factor improvement, Harmonic reduction, filter.

Unit-III

DC to DC Converters: Types of basic DC-DC converters, Analysis of Buck converter (DC-DC) circuit, Commutation of thyristor based circuits, Introduction to switched mode power supply

(SMPS) circuits, Fly-back type switched mode power supply, Forward type switched mode power supply, Design of transformer for switched mode power supply circuits.

Unit-IV

AC to AC Voltage converter: Three phase AC regulators, Phase angle control in Traic based single Phase AC regulators, Introduction to cyclo converters, three phases to single phase cyclo converters, three phase to three phase cyclo converters, Control circuit for three phase to three phase converter.

Unit-V

Introduction to voltage source Inverters, Analysis of 1-Phase square wave voltage source Inverter, 3-Phase voltage source with square wave output. 3-phase pulse width modulated inverter. Sine PWM and its realization, current source Inverter, Load commutated current source inverter.

Text Books:

- 1. M. D. Singh and K. B. Khanchandani," Power Electronics".
- **2.** Ned Mohan, Tore M. Undeland, and William P. Robbins,"Power Electronics: Converters, Applications And Design, Media Enhanced (With CD)".
- **3.** John G. Kassakian, Martin F. Schlecht, and George C. Verghese,"Principles Of Power Electronics".

- 1. <u>G. K. Mithal</u>, <u>Maneesha Gupta</u>, "Industrial and Power Electronics", Khanna Publishers, 1987.
- <u>George M. Chute</u>, <u>R. D. Chute</u>, "Electronics in Industry", McGraw-Hill School Pub Co, 5th Edition

Course Title	:	(0	Data)pen F	Struct Electiv	B.Tech V Sem (R20) CSE					
Course Code		Category	Hours/Week			Credi ts	Maximum Marks			
20OE501		OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Tot al	
			3	0	0	3	40	60	100	
Ν	Mid Ex	am Duration:	90 Mi	nutes			End Exam Duration: 3Hrs			
Course C	Objecti	ves:								
	•	To develop ski	lls and	analyz	ze linea	r and nonline	ear data structur	es.		
	٠	To understand	basic c	concep	ts about	linked lists,	stacks, queues.			
	٠	To study algori	thms a	as they	apply to	o trees and g	raphs.			
	•	To study in det	ail abo	out sort	ing.					
Course C	Outcon	nes: On succes	sful co	mplet	ion of t	his course, t	he students wi	ll be able	to	
CO 1	Unde	rstand the varie	ety of a	lbstrac	t data ty	pes and data	structures.			
CO 2	Analy	lyze data structures such as linked list, Stacks and Queues.								
CO 3	Appl	Apply and analyze tree traversal algorithms and graph traversal algorithms.								
CO 4	Orga	ganize data in order using various sorting algorithms.								

<u>UNIT - I</u>

Introduction: Data structures, Primitive & Non Primitive data structures, Linear & Non Linear data structures, **Linear Lists:** Definition, **Arrays:** Definition, **Linked Lists:** Single Linked List-Definition, Insertion and Deletion operations, Doubly Linked List- Definition, Insertion and Deletion operations, Array & Linked representations, Operations, Applications.

<u>UNIT – II</u>

Queues: Definition, Array & Linked representations, Operations, Circular Queues & Dequeues.

Trees: Basic terminology, **Binary Trees** - Definition, Properties, Representation, Complete and Full Binary Tree, **Tree Traversal Algorithm:** Inorder, Preorder and Postorder.

<u>UNIT – III</u>

Binary Search Tree (BST): Definition, Operations & Implementations, Indexed BST.

Balanced Search Trees: AVL trees, Red-Black trees & Splay trees.

<u>UNIT - IV</u>

Graphs: Terminology, Representations, **Graph Traversal:** Depth First Search (DFS), Breadth First Search (BFS), Applications of graphs.

<u>UNIT - V</u>

Sorting: Selection, Insertion, Bubble, Heap, Quick Sort, Merge Sort.

Searching: Linear and Binary search.

Hashing: Introduction, Hash Table representation, Hash Functions.

Text Books:

1. An Introduction to Data Structures with applications, Jean Paul Trembley and Paul

G.Sorenson, McGraw Hill.

2. Fundamentals of Data Structures in C, Horowitz, Sahni, Anderson Freed, Universities press.

3. Data Structures using C++, Varsha H.Patil, Oxford University Press.

- 4. Data Structures, Seymour Lipschutz, Schaum's Outlines, McGraw Hill.
- 5. Data Structures and Algorithms, G.A.V.Pai, Tata McGraw Hill.

Reference Books:

1. Data Structures, Algorithms and Applications in C++, AnandaRao Akepogu and Radhika Raju Palagiri, Pearson Education.

2. Data Structures and Algorithms in C++, S.Sahni, University Press (India) Private Limited, Second Edition.

3. Data Structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI.

Course	Databa	ase Management Syste	B.Tech V Sem (R20) CSE	
Title	(Op	en Elective Course – I		
Course	Category	Hours/Week	Credi	Maximum Marks

Code						ts			
20OF	2502	OE C	L	Т	Р	С	Continuous Internal Assessment	End Exams	Tot al
			3	0	0	3	40	60	100
Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs									s
Course	Course Objectives:								
• ′	• To study the physical and logical database designs, database modeling, relational								
	hierarchical, and network models.								
• ′	To underst	and and use	e data ma	anipulati	on lang	uage to qu	uery, update, ar	nd	
1	managing t	he databas	e.						
• ′	To develop	an underst	tanding o	of essent	ial DBI	MS concep	ots such as: dat	abase secu	ır
i	integrity ar	nd concurre	ency.						
Course	Outcomes	s: On succ	essful co	mpletio	n of thi	is course,	the students w	vill be able	e to
CO 1	To under	stand the b	asic con	cepts and	d the ap	plication	of Database sys	stems.	
CO 2	To under	stand the b	asics of	SQL and	l constr	uct querie	s using SQL.		
CO 3	To under	stand the R	elationa	l Databa	se desi	gn princip	les.		
CO 4	To apply	To apply various Normalization techniques for database design improvement.							
CO 5	To apply	concurren	cv contro	ol and re	coverv	technique	s during transa	ctionexecu	ition.

UNIT-I

Introduction - Database-System Applications, View of Data, Database languages, Database architecture, Database Users and Administrators.

E-R Model - The Entity Relationship Model, Constraints, Entity Relationship Diagrams, and Extended E-R features.

UNIT-II

Relational Model - Structure of Relational Databases, Database Schema, Keys, Query Languages, Fundamental Relational Algebra Operations, Additional Relational Algebra Operations, Extended Relational Algebra Operations, Modification of Database.

UNIT-III

Introduction to SQL - Data Definition, Basic Structure of SQL Queries, Set Operations, Null Values, Aggregate Functions, Nested Sub queries, Complex queries, views, Modification of

the Database.

Advanced SQL -Integrity Constraints, Dynamic SQL, Functions and Procedures.

Other Relational Query Languages - Tuple Relational Calculus, Domain Relational calculus.

UNIT-IV

Normal Forms – Atomic domain and First Normal Form, Keys and Functional Dependencies, Second Normal Form, BCNF, BCNF and Dependency Preservation, Third Normal Form, Lossless Decomposition, Dependency- preserving, Multi valued Dependencies, Fourth Normal Form, Join Dependencies, Fifth Normal Form, and Inclusion dependencies.

UNIT-V

Transactions -Transaction Concept, Transaction State, Implementation of Transaction Atomicity and Durability, Concurrent Executions, Serializability.

Concurrency Control -Lock-Based Protocols, Timestamp-Based Protocols. **Recovery System -**Failure Classification, Storage, Recovery and Atomicity, Log based recovery.

Text Books:

- Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database system Concepts", 5thEdition, McGrawhill.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 3rd Edition, 2003
- 3. C.J.Date, "Introduction to Database", 8 Th Edition, 2003, Addison-Wesley publication.
- Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", Pearson Education, United States 1st Edition, 2000

<u>Reference Books</u>:

- Raghurama Krishnan, Johannes Gehrke, Data base Management Systems.3rd Edition, Tata McGrawHill.
- Peter Rob, Ananda Rao and Carlos Corone, Database Management Systems, Cengage Learning, 1st Edition, 2011

- Thomas Connolly, Carolyn Begg, Database Systems: A Practical Approach to Design, Implementation and Management,6th Edition,2012.
- 4. S.K.Singh, "Database Systems Concepts, Design and Applications", First Edition, Pearson Education, 2006.

<u>Reference Links</u>:

- 1. <u>https://nptel.ac.in/courses/106/105/106105175/</u>
 - (IIT KHARAGPUR) (IIT MADRAS)
 - . <u>https://hpter.ac.nl/courses/100/105/100105175/</u>
- 2. <u>https://nptel.ac.in/courses/106/106/106106095/</u>

Course	Title	DA' (Oper	TA ST 1 Elect	TRUC tive C	TURI ourse	ES - I)	B.Tech. V Sem (R20UG) AI&ML				
Course (Code	Category	Hou	rs / W	Veek	Credits	Maximum Marks				
200E39	901	OEC	L	L T P		С	ContinuousInternalEnAssessmentExample		Total		
			3	0	0	3	40	60	100		
Mid	Exam	Duration :	90 M	inutes	End Exam Duration: 3Hrs						
Course O	Course Objectives:										
• To	o develo	op skills an	d anal	yze lir	near ar	nd nonlinea	ar data structures.				
• To	ounders	stand basic	conce	pts ab	out lir	nked lists,	stacks, queues.				
• To	study a	algorithms	as the	y appl	y to tr	ees and gr	aphs.				
• To	study i	in detail ab	out so	rting.							
Course O	Outcom	es: On suc	ccessfu	ıl com	pletio	on of this o	course, the students w	ill be able to)		
CO1	Understand the variety of abstract data types and data structures.										
CO2	Analy	nalyze data structures such as linked list, Stacks and Queues.									
CO3	Apply	and analyz	ze tree	traver	sal alg	gorithms a	nd graph traversal algor	rithms.			

CO4 Organize data in order using various sorting algorithms.

<u>UNIT - I</u>

Introduction: Data structures, Primitive & Non Primitive data structures, Linear & Non Linear data structures, **Linear Lists:** Definition, **Arrays:** Definition, **Linked Lists:** Single Linked List-Definition, Insertion and Deletion operations, Doubly Linked List-Definition, Insertion and Deletion operations. **Stacks:** Definition, Array & Linked representations, Operations, Applications.

<u>UNIT – II</u>

Queues: Definition, Array & Linked representations, Operations, Circular Queues & Dequeues. **Trees:** Basic terminology, **Binary Trees** - Definition, Properties, Representation, Completeand Full Binary Tree, **Tree Traversal Algorithm:** In order, Preorder and Post order.

<u>UNIT – III</u>

Binary Search Tree (BST): Definition, Operations& Implementations, Indexed BST. **Balanced Search Trees:** AVL trees, Red-Black trees & Splay trees.

<u>UNIT - IV</u>

Graphs: Terminology, Representations, **Graph Traversal:** Depth First Search (DFS), Breadth First Search (BFS), Applications of graphs.

UNIT - V

Sorting: Selection, Insertion, Bubble, Heap, Quick Sort, Merge Sort.

Searching: Linear and Binary search.

Hashing: Introduction, Hash Table representation, Hash Functions.

Text Books:

- 1. An Introduction to Data Structures with applications, Jean Paul Trembley and Paul G.Sorenson, McGraw Hill.
- 2. Fundamentals of Data Structures in C, Horowitz, Sahni, Anderson Freed, Universitiespress.
- 3. Data Structures using C++, Varsha H.Patil, Oxford University Press.
- 4. Data Structures, Seymour Lipschutz, Schaum's Outlines, McGraw Hill.
- 5. Data Structures and Algorithms, G.A.V.Pai, Tata McGraw Hill.

Reference Books:

- 1. Data Structures, Algorithms and Applications in C++, AnandaRao Akepogu and Radhika Raju Palagiri, Pearson Education.
- 2. Data Structures and Algorithms in C++, S.Sahni, University Press (India) Private Limited, Second Edition.
- 3. Data Structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI.

Web links:

- 1. https://nptel.ac.in/courses/106102064
- 2. https://nptel.ac.in/courses/106103069

Course	Title	OC (Ope)P TH en Ele	IROU(ctive C	GH C+ ourse	-+ - I)	B.Tech. V Sem (R20UG) AI&ML			
Course	Code	Category	H	lours / `	Week	Credits	Maximum M	larks		
20OE3902		PJ	L	Т	Р	С	ContinuousInternal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
	Mid Exam Duration: 90 Min						End Exam Duration: 3Hrs			
• T • T • T	To make the students understand the features of object-oriented design and familiarize them with virtual functions, templates and exception handling. To enable the students solve various engineering problems in C++ programming language.									
Course	Outcor	mes: On suc	cessfi	ul comp	oletion	of this co	urse, the students will	be able to		
CO 1	Unde	rstand the fu	ındam	entals o	f C++					
CO 2	Expla	in the conce	ept of '	Tokens	and C	ontrol Stru	ctures.			
CO 3	Illustrate the concept of Classes and Objects.									
CO 4	Demo	Demonstrate the concept of Operator overloading and Inheritance.								
CO 5	Unde	rstand the co	oncept	of Poi	nters, '	Virtual fur	ctions and Polymorphi	sm		

UNIT – I

Principles of Object-Oriented Programming: Object-Oriented Programming Paradigm, Basic Concepts of Object-Oriented Programming, Benefits of OOP, Applications of OOP. **Beginning with C++:** Comments, Output Operator, The iostream File, Variables, Input Operator, Cascading of I/O Operators, Structure of C++ program.

<u>UNIT – II</u>

Tokens, Expressions and Control Structures: Tokens, Keywords, Identifiers and Constants, Basic Data Types, Declaration of variables, Dynamic initialization of variables, Reference variables, Operators in C++, Scope resolution operator, Memory management operators, Manipulators, Control Structures,

Functions in C++: Function Prototyping, Call by reference, Return by reference, Inline Functions, Function Overloading.

<u>UNIT – III</u>

Classes and Objects: Specifying a Class, Defining Member Functions, Memory allocation for objects, Static data members, Static member functions, Arrays of objects, Friendly functions, **Constructors and Destructors:** Constructors, Parameterized constructors, Multiple constructors in

aclass, Constructors with default arguments, Copy constructor, Dynamic constructor, Destructors.

<u>UNIT – IV</u>

Operator Overloading: Defining operator overloading, Overloading Unary operators, Overloading Binary operators, Overloading Binary operators using Friends.

Inheritance: Introduction, Single Inheritance, Multilevel Inheritance, Multiple Inheritance, Hierarchical Inheritance, Hybrid Inheritance, Virtual base classes, Abstract classes.

<u>UNIT – V</u>

Pointers, Virtual Functions and Polymorphism: this Pointer, Virtual Functions, Pure virtual functions.

Managing Console I/O Operations: Unformatted I/O operations, Formatted console I/O operations.

Templates: Class Templates, Function Templates, Overloading Template functions, Member function Templates.

Exception Handling: Basics of Exception handling, Exception handling mechanism.

Text Books:

- 1. The Complete Reference C++, Herbert Schildt, TMH 4th Edition.
- 2. Learning Computer Science : A Structured Approach Using C++,2nd Ed., Forouzan, Thomson.
- 3. Object Oriented Programming With C++, E. Balagurusamy, TMH 6th edition.

<u>Reference Books</u>:

- 1. Object oriented programming with ANSI and TURBO C++, Ashok N Kamathane, Pearson education.
- 2. Object oriented programming with C++, Saurav Sahay, Oxford.
- 3. Learning C++ Programming: From Problem Analysis To Program Design, Malik, Thomson

Course Title	Emj	ployab	oility S	kills	B.Tech. Open Elective-I			
Course Code	Category	Hours/Week			Credits	Maximum Marks		
20OE601	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exam	Tot al
		3	0	0	3	40	60	100
	D 4 00 N	T !						

Mid Exam Duration: 90 Min

External Exam Duration: 3 Hrs

Introduction:

Employability skills play an important role in one's career. Professional skills are a person's skill set and ability to perform a certain type of activity or task. Employability skills are a person's ability to interact effectively with co-workers and customers. Hard skills are mainly applicable at the work place. Employability skills are applicable both at workplace and outside the work place. Employability skills complement the hard skills which are occupational requirement of a job. It also complements many other activities even outside the work place. Presently employability skills are increasingly sought out by employers in addition to standard qualification. There are instances of professions where employability skills refer to behavior, communication, IT Skill, work ethics etc. which makes a person suitable to effectively work in a team. Studies suggest that employability skills are equally important indication of job performance as hard skills. The competency level of the worker increases with the Employability skills and takes him to the next level.

Course Objectives: The main objective of this course is to make the the students

- i. Demonstrate effective presentations
- ii. Develop and practice self-management skills
- iii Assess and improve personal grooming
- iv. Create safety awareness including rules and procedures on the work site.
- v. Survey the required skills for discussing and resolving problems in the work arena.

Course Outcomes: On success Completion This course ,the students will be able to

CO1 Demo	onstrate presentations
----------	------------------------

CO2	Develop and practice self-management skills
CO3	Assess and improve personal grooming
CO4	Create safety awareness including rules and procedures on the work site.
CO5	Survey the required skills for discussing and resolving problems in the work
	arena.

Syllabus:

UNIT-1 Communication and Teamwork – Communicating effectively, Interpersonal and Intrapersonal skills, A good leader, Leadership behavior, Assertiveness skills.

UNIT -2 Etiquette and Manners – Social and Business. Time Management – Concept, Essentials Tips – prioritization, Kinesics, Adaptability Skills.

UNIT –**3 Decision-Making and Problem-Solving Skills:** Meaning, Types and Models, Ethical Decision-Making, Problems and Dilemmas in application of these skills. Conflict - Definition,

Nature, Types and Causes; Methods of Conflict Resolution, Conflict Management.

UNIT -4 Stress Management: Stress - Definition, Nature, Types, Symptoms and Causes; Stress Analysis Models and Impact of Stress; Measurement and Management of Stress.

UNIT –5 Interview and Presentation Skills: Definition, in-depth perspectives of interviewer and interviewee, preparation – before, during, after, overcoming nervousness, tips for success, Interviewer and Interviewee – Presentation Skills: Types, Content, Audience Analysis, Essential Tips

References:

1. Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011.

2. S.P. Dhanavel, English and Soft Skills, Orient Blackswan, 2010.

3. R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S.Chand& Company Ltd., 2018.

4. Raman, Meenakshi& Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011.

5. Managing Soft Skills for Personality Development – edited by B.N.Ghosh, McGraw Hill India, 2012. 6. English and Soft Skills – S.P.Dhanavel, Orient Blackswan India, 2010.

Course Title	ADVA I	ANCED METH() NUM ODS (1	IERI(R20)	OPEN E	LECTIVE	- I		
Course Code	Category	Hou	ırs/We	ek	Credits	Maximum Marks			
20OE602	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3			3	40	60	100	
Mid Exam Du	ration: 90 Mi	inutes			End Exam Dur	ation: 3Ho	urs		

Course Objectives:

1. To solve algebraic, transcendental equations and system of linear equation by various methods.

- 2. To interpolate and approximate equal and unequal intervals by various formulae.
- 3. To discuss approximation of numerical differentiation and integration.
- 4. To solve Ordinary Differential Equations (ODEs) in initial value problems (IVPs) by various methods.
- 5. To solving ODEs & partial Differential Equations (PDEs) in boundary value problems (BVPs) by various methods.

Course Outcomes: On successful completion of this course, the students will be able to							
CO 1	Understand the basic knowledge on solution of system of equations.						
CO 2	Use interpolation and approximation to solve engineering problems.						
CO 3	Estimate the numerical differentiation and integration.						
CO 4	Apply initial value problems for solving first order differential equation.						
CO 5	Discuss the boundary value problems in ordinary and partial differential equations.						

UNIT I:

Solution of Equations: Solution of algebraic and transcendental equations- Fixed point iteration method, Horner's Method.

Solution of linear system of equations: Gauss Crout's Method, Relaxation method.

UNIT II: Interpolation and Approximation

Finite Differences-Other Difference Operators- To find one or more missing terms. Divide Difference -Newton's divided difference interpolation, Inverse interpolation formula.

UNIT III: Numerical Differentiation and Integration

Numerical differentiation: Finding first and second order derivatives using Newton's formulae. Numerical integration: Newton - Cote's quadrature formulae, Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule.

UNIT IV: Initial Value Problems for Ordinary Differential Equations

Single Step methods: Taylor's series method, Euler's method, Fourth order Runge - Kutta method for solving first order equations.

Multi step method: Milne's predictor - corrector method.

UNIT V: Boundary Value Problems in Ordinary and Partial Differential Equations

Finite difference methods for solving two-point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace's equation. **Text books:**

- 1. Grewal.B.S., and Grewal.J.S., "Numerical methods in Engineering and Science", Khanna Publishers, 9th Edition, New Delhi, 2007.
- 2. Kandasmay, P; Thilagavathy, K; Gunavathi, K, Numerical Methods, S.Chand And Company Ltd, 2007.
- 3. Applied Numerical Analysis, Pearson Publishers, 7th Edition, Curtis F. Gerald, Patrick O. Wheatley.
- 4. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Publications, 10th edition Reprint 2021.

- 1. Chapra.S.C., and Canale.R.P., "Numerical Methods for Engineers, Tata McGraw Hill, 5th Edition, New Delhi, 2007.
- 2. Sankara Rao. K., "Numerical methods for Scientists and Engineers", Prentice Hall of India Private, 3rd Edition, New Delhi. 2007.
- 3. Applied Numerical Methods with MATLAB for Engineers and Scientists, Special Indian Edition, Steven C Chapra.
- 4. Advanced Engineering Mathematics, Neil Opeter V.

Course Title	ENGI	ENGINEERING MATERIALS					OPEN ELECTIVE- 2		
Course Code	Category	Но	ours/We	eek	Credits	Maximum Marks			
	BSC	L	Т	Р	С	Continuous Internal Assessment	End lab Exams	Total	
		3	0	0	3	40	60	100	
					End Exam Duration: 3Hrs				

COURSE OBJECTIVES:

1.This introductory course is aimed to obtain basic exposure to the concepts of crystalline solids, its imperfections and basics of various advance engineering materials finding wide spread application in several industries.

2.Describe the process that is used to produce glass-ceramics.

3.To enlighten the periodic arrangement of atoms in crystals to provide fundamentals related to structural analysis through powder diffraction method.

4.Understanding these material systems are vital for investigating the defects and their nature on these classes of materials.

<u>Course Outcomes</u> : Upon completion of the course, the student will be able to:					
	Classify various crystal systems.				
CO1					
	Explain the applications of magnetic materials.				
CO2					
	Analyze the various metallurgical factors influencing the performance of materials for				
	different Structural engineering applications.				
CO3					
	Interpret Lorentz field and Claussius-Mosotti relation in dielectrics.				
CO4					
	Identify applications of semiconductors in electronic devices.				
CO5					

Unit –I: Structure of Metals

Introduction-Different types of bonding in solids – Space lattice, Basis, unit cell and lattice parameters – Bravais Lattice – Crystal systems – Packing fraction – Coordination number – Packing fraction of SC, BCC.

Unit– II: Magnetic Materials

Introduction to magnetic materials - Classification of magnetic materials: Dia, Para & Ferro – Domain concept of Ferromagnetism (Qualitative) – Hysteresis loop– Soft and Hard magnetic materials.

Unit–III: Ceramics

Introduction-Types and applications of ceramics- Glasses - Glass-Ceramics - Clay Products - Refractories - Abrasives Cements - Advanced Ceramics - Materials of Importance— Piezoelectric Ceramics

Unit –IV: Dielectric Materials

Introduction to Dielectrics-Electric polarization- Dielectric polarizability, Susceptibility and Dielectric constant-Types of polarizations(Qualitative)–Frequency dependence of polarization-Lorentz(internal) field- Classius-Mosotti equation- Applications of Dielectrics

Unit –V: Electrical Properties of materials

Electrical conduction: - Ohm's Law - Electrical Conductivity- Electronic and Ionic Conduction - Energy Band Structures in Solids.

Semiconductivity:- Intrinsic Semiconductor - Extrinsic Semiconductor - The Temperature Dependence of Carrier Concentration - Hall Effect - Applications

Text Books:

1. Callister's Materials Science and Engineering: Wiley, Second Edition, (2018)

2. V. Raghavan, Materials Science and Engineering, Prentice Hall of India, 5th edition (2013).

3. G.E. Dieter, Mechanical Metallurgy, Mc-Graw Hill, 3rd edition (2013).

Reference Books:

1. L. H. Van Vlack, Elements of Materials Science and Engineering, Addison Wesley, 6th edition (1989).

2. I. J. Polmear, Light Alloys: Metallurgy of the Light Metals, Wiley, 3rd edition (1995).

3. V. Raghavan, Physical Metallurgy: Principles and Practice, PHI Learning Private Limited, 2nd edition (2006).

Cours	se Title	Title Basics of Nanotechnology					B. Tech. (Open elective-I)			
Cours	se Code	Category	ry Hours/Week			Credits	Maximum Marks			
200	E604	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exa	Mid Exam Duration: 90 Min						End Exam Duration: 3Hrs			
 To make the students acquire an understanding the Nanoscience and Applications Student will be able to understand and control matter at the nanoscale leads to a revolution i technology and industry that benefits society. 										
Course	Course Outcomes: On successful completion of this course, the students will be able to									
CO 1	Acquire knowledge about structure and properties of nano materials									
CO 2	Synthesis of nanomaterials by various methods & their applications									
CO 3	Identify and understand various top-down and bottom-up approaches for nanomaterial synthesis									
CO 4	Correlate properties of nanostructures with their size, shape									
CO 5	Appreciate enhanced sensitivity of nanomaterial-based sensors and their novel applications in industry									

Unit-I: Introduction

History and Scope, Introduction to nanomaterials, Classification of nanomaterials with suitable examples, Structure of different nanomaterials- Graphenes, CNT's, Fullerene, Properties of nanomaterials-Chemical, Optical, Thermal, Electrical Mechanical.

Learning Outcomes:

At the end of the unit, The students will be able to

- Classification of nanomaterials.
- Identify different structures of nanomaterials.

Unit-2: Synthesis of Nanomaterials

Chemical precipitation and Co-precipitation, Sol-gel synthesis, Electrochemical synthesis, Photochemical synthesis, Evaporation method-Principal & its uses

Learning Outcomes:

At the end of the unit, The students will be able to

- Explain Sol-gel method.
- Discuss electrochemical and chemical methods of synthesis.

Unit-3: Fabrication of Nanomaterials

Top-Down method (Ball milling), Bottom-up method (chemical vapour deposition method, Sol gel method), Self- assembly method, Electric arc method. Nanocomposite fabrication.
Learning Outcomes:

At the end of the unit, The students will be able to

• Explain methods used in fabrication of different nanomaterials

Unit-4: Properties of Nanomaterials

Importance of nano particle, effect of Size on optical, electronic, photonic, mechanical, magnetic and catalytic properties.

Learning Outcomes:

At the end of the unit, The students will be able to

- Explain the importance of nano particles.
- Discuss the effect of size on different properties.

Unit-5: Applications of Nanomaterials

Applications of Nano electronics, Nanooptics, Nano scale chemical & biosensing, biological/ Biomedical applications, Photo voltaic fuel cells-Related applications

Learning Outcomes:

At the end of the unit, The students will be able to

• Know the applications of nanomaterials in different fields.

Textbooks:

1. Text Book of Engineering Chemistry, Shashi Chawla, Dhanapath Rai Publications, New Delhi, 4th Edition, 2011.

2. Textbook of Nanoscience and Nanotechnology in Engineering, Marcel Van de Voorde (Ed.), De Gruyter publications

3. Nanoparticles-Biological activities and nanotechnology, Mindy Adams, NY Research Press

4. Theory and applications of Nano particals, Andrew Green, NY Research Press

Reference Books:

1. Textbook of Nanoscience & Nanotechnology, B.S. Murthy p. Shankar Baldev, University Press-IIM

2. Nanotechnology- A future technology with Visions-BPB Publications

3. Nanotribology, edited by Stephen M. Nsu, Z. Charles Ying, Springer International Edition

4. Introduction to Nanotechnology, Charles P. Poole Jr. Frank J. Owens, Willey Students Editions.

Course	Title	v	VRITE	IT RI	GHT		OPEN ELECTIVE - I			
Cour Cod	rse e	Category	Ног	ırs/We	eek	Credits	Maximum Marks			
20OE	605	HUM	L	L T P		С	Continuous Internal AssessmentEnd Exams		Total	
			3			3	40	60	100	
Mid Exa	am Du	ration: 90 M	in				End Exam Dur	ation: 3Ho	ours	
Course (1.To h 2.To g 3. To p dail	 Course Objectives: 1.To help students get the basics right. 2.To grasp the nature of the writing exercise one has embarked upon 3. To promote effective writing across a whole range of tasks that all of us face on a daily basis 									
Course	Outco	mes: On succ	essful	compl	etion	of this cour	se, the students	will be abl	e to	
CO 1	Utiliz	e effective teo	chnique	es for v	vriting	g job applica	ations /course app	plication.		
CO 2	Recal	ll the contents	to mak	ke use o	of goo	od paragraph	n writing.			
CO 3	Identifying grammatical errors and can make necessary corrections.									
CO 4	Demonstrate effective grammatical skills in English.									
CO 5	Paraphrase a piece of writing and summarize it easily.									
Syllabu	Syllabus:									

Unit 1.

- 1. The logic of Effective Writing
- 2. Applying for a course: Applying for a job
- 3. Writing Correct and Convincing sentences

Unit 2:

- 1. Generating Ideas through Prewriting
- 2. Using the Patterns of Paragraph Development:
 - a. Narration
 - b. Description
 - c. Argument
 - d. Exposition

Unit 3:

- 1. Punctuation list of punctuation marks- their usage for effective written communication
- 2. Misplaced modifiers
- 3. Confused words
- 4. Common mistakes in English
- 5. The Right Use of the definite article

Unit4:

- 1. Report writing types sample reports
- 2. e-mail writing
- 3. Elements of good essay

Unit 5:

- 1. Precise Writing
- 2. Developing of an idea/ Expansion
- 3. Note-making

Text books:

1. Write it Right: A Handbook for Students authored by John Peck and Martin Coyle published by Palgrave Macmillan in New York and Hampshire in 2005.

2. Odyssey- A Guide to Better Writing by William. J. Deborah Lawton Published by Allyn and Bacon.

Reference books

1. Heffron, Jack (ed). The Best Writing on Writing. Story Press, Cincinnati, Ohio, 1994.

2. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.

3. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.Oxford Learners Dictionary, 12 th Edition, 2011

Course Title	Human (Capital	Mana	geme	ent	B.Tech. Open Elective-1					
Course Code	Category	Ηοι	ırs/We	ek	Credits	Maximum Marks					
20OE606	Open Elective (OEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		3	0	0	3	40 60 100					
Mid Exam Duration: 90 Min						End Exam Duration: 3Hrs					
•	To help the s and develop To develop r ToEnablethe edomaincon	ertainsp student: man po relevan estuder ceptino	ecificin s focus ower re t skills ntstoint orderto	on an source neces tegra	riesororga nd analyze ces. ssary for a tetheunde correctbus	the issues and strate pplication in HR rela rstandingofvariousF	gies requin ted issues IRconcep	red to select tsalongwithth			
Course Out	t comes : On s	uccessi	ful com	pleti	on of this	course, the students v	will be able	e to			
CO1	Understandi	ngofro	lesandr	espo	nsibilitieso	ofHRdepartmentining	lustries.				
CO2	Have knowl	edge to	under	stand	job analy	sis and design jobs.					
CO3	Understand job evaluation and estimate HR requirements.										
CO4	Able to con	duct ree	eruitme	ent &	selection	process.					
CO5	Abletounder	rstandti	aining	meth	ods.Havec	larityofemployeecon	npensation	L			

Unit-I

Introduction of HRM: Nature, scope, objectives, Importance and functions, Evolution of the concept of HRM, Human resource management in India; Roles of HR manager, Practice in Industry

Unit-II

Job Analysis &Design: Job Analysis-Meaning, Uses, Process and methods of collecting data for job analysis, Job Description, Job Specifications, Factors affecting Job Design, Techniques of

Job Design.

Unit-III

Job Evaluation and Human Resources Planning: Objectives of Job Evaluation; Advantages and Limitations of Job Evaluation, Human Resources Planning (HRP), Need and Benefits of HRP, Process of HRP ,Factors Affecting HRP, Responsibility for HRP.

Unit-IV

Recruitment & Selection: Factors Affecting Recruitment; Sources of Recruitment; Selection Process, Methods of selection-Interviews, Tests, Need for Training and Methods of Training.

Unit-V

Human Resource Development: Meaning, Definition of HRD, objectives, Significance, functions and HRD process.

Text Books:

- 1. HumanResourceandPersonnelManagement-TextandCases:K.Ashwathappa,TataMcGrawHillEducationPvt.Ltd.
- 2. PersonnelandHumanResourceManagement-P.SubbaRao,HimalayaPublishing.
- 3. Human Resource Management John M Lvancevich (1988) Publish Irwin Mcgraw Hill.
- 4. Human Resource Management Greg L. Stweart John wiley & sons, Inc Publications.
- 5. Human Resource Development_ Mohammad mohsim (2010) Publisher Vdm Verldg Dr. Muller.

Reference Books:

1. Human Resource Management: P.Jyothi, Publication,OxfordUniversityPress

Course Tit	e Concrete	Tech	nolog	gy La	ıb	B.Tech CE	V Sem (]	R20)]	
Course Co	e Category	Ηοι	ırs/W	eek	Credits	Maximu	m Mark	S]	
2001507	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(\mathbf{ICC})	0	0	3	1.5	40 60 100				
	Mid Exam Dura	tion:				End Exam Du	iration:	3 Hrs		
Course Obj	Course Objectives:									
• To a	• To achieve the practical knowledge regarding concrete testing equipment and their									
oper	operation.									
• To fa	• To familiarize the students with physical and mechanical properties of cement concrete									
cons	constituents.									
• To p	• To provide practical knowledge and understanding towards the materials used for									
conc	rete.									
• To a	quire practical skills in	the are	ea of c	emen	t, fresh & h	nardened concrete	e testing.			
Course Out	comes: On successful c	omplet	tion of	f this o	course, the	students will be	able to		1	
CO1 Con	versant with ideas and o	concep	t of va	arious	properties	of cement, fine a	ggregate	es & coa	irse	
agg	regates.	-								
CO 2 Ap	reciate importance of q	uality o	contro	l proc	edures of f	resh & hardened	concrete	e with re	gard to	
thei	suitability in construct	ion jot	DS	-					-	
CO3 Rel	te the efficiency of test	results	s with	regar	d to accept	ability of these m	aterials	to be use	ed in	
con	crete.			-	•	-				
CO 4 Des	ign & describe the prep	aration	of mi	ix pro	portion of c	concrete and testi	ing.			
CO 5 Ena	5 Enable to proportion the ingredients of concrete of a given strength so as to prepare concrete to									
nee	needs at site.									
nee	io at 5110.									

List of Experiments:

- 1. Determination of fineness & Physical properties of cement (OPC & PPC)
- 2. Determination of normal consistency of standard cement paste
- 3. Determination of specific gravity of cement (OPC & PPC)
- 4. Determination of initial and final setting times of cement (OPC & PPC)
- 5. Determination of the compressive strength of cement for OPC & PPC
- 6. Determination of fineness modulus of coarse and fine aggregate
- 7. Specific Gravity of coarse and fine aggregate
- 8. Determination of bulking of fine aggregate
- 9. Determination of workability of concrete by slump cone test & compaction factor test
- 10. Determination of hardened properties of concrete by compressive strength.

Augmented Experiments:

1. Flexural Strength Test of Concrete (Beam)

2. Split Tensile Strength Test of Concrete (Cylinder)

Text Books:

 M S Shetty "Concrete Technology – Theory and Practice", S Chand & Company Limited, New Delhi.

Reference Books:

 Hemant Sood, L N Mittal and P D Kulkarni "Laboratory Manual on Concrete Technology", C B S Publishers and Distributors, New Delhi.

Course T	Structural Anal (STA)	ysis a	and l Pro)	B.Tech CE V Sem (R20)					
Course C	Code Category	Hou	Hours/Week Credits			Maximum Marks			
200150	98 Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		0		3	1.5	40	60	100	
	Mid Exam Durat		End Exam Dura	tion: 3 H	Irs				
Course Objectives:									
• Le	• Learn how to achieve user specified design parameters to customize design								
• Kn	now how to perform code	chec	k, m	ember	selection	and optimized mem	ber sele	ction	
coi	nsisting of analysis or design	cycles	5			-			
• Ap	oply the fundaments of reinfo	orced	conci	ete to	design stru	ictures like beams, sla	abs, colu	mns,	
ret	aining walls, water tanks, and	l other	struc	ctures.	C		ŗ	,	
Course O	utcomes: On successful com	pletio	n of tl	his cou	urse, the stud	dents will be able to			
CO 1	Apply the core, multidisci	plinar	y kno	wledg	ge for unde	erstanding the probler	ns in sti	ructural	
	engineering and allied fields					0 1			
CO 2	Identify and analyse the im	pact of	of stru	ictural	engineerin	g in development pro	jects and	l find a	
	suitable solution from numb	er of a	altern	atives	C .		,		
CO 3	Demonstrate in-depth know	ledge	of S	tructu	ral Engineer	ring and build capabil	ity toap	oly that	
	knowledge to real problems				C		2 11		

Exercises:

- 1. Analysis and design of Beam
- 2. Analysis and design of Column
- 3. Analysis and design of 2-D portal frame
- 4. Analysis and design of 3-D portal frame
- 5. Analysis and design of Two-Way Slab.
- 6. Analysis and design of Retaining Wall
- 7. Analysis and design of Water Tank
- 8. Analysis and design of steel tabular truss
- 9. Analysis and design of transmission tower
- 10. Earthquake load & wind load application to RC structures along with the design for different load combinations.

Text Books / Reference Books:

 Dr.M.N. Sesha Prakash And Dr.C.S.Suresh, "Computer Aided Design Lab Manual" Laxmi Publications.

- 2. T.S. SARMA, "STAAD.PRO V8i for Beginners with indian Examples".
- Prof.SHAM TICKOO, "Leaning Bentley STAAD.PRO V8i for Structural Analysis", Publisher : Dreamtech Press, USA.

Course Title	e Sk	etchUj	p-3D r	nodel	ing	B.Tech CE V Sem (R20)				
Course Code	Category	Но	ırs/We	ek	Credits	Maximum	Marks			
20015S	3 Skill (SC)	L	Т	Р	С	Continuous Internal Assessment	Total			
		1	0	2	2	40	60	100		
	Mid Exam	Durati	on: 1.5	5 Hrs		End Exam Dur	ration: 3 H	[rs		
Course (Objectives:									
• T	o know the basi	ic drawi	ing too	l to dra	w the building	ng plans				
• T	o create 3D mo	dels of	buildin	g com	ponents and	to prove customised o	utputs.			
Course (Outcomes: On successful completion of this course, the students will be able to									
		Use the SkechUp Layout and SkechUp for civil engineering drawing.								
CO 1	Use the Skechl	Jp Layo	out and	Skech	Up for civil	engineering drawing.				
CO 1 CO 2	Use the SkechU Create 2D and	Jp Layo 3D moo	out and dels of	Skech build c	Up for civil components	engineering drawing.				

Exercises:

- 1. Introduction to sketchup Layout.
- 2. Drawing building plan using sketchup Layout.
- 3. Introduction to Sketchup 2D and 3D.
- 4. Drawing building components: doors, windows, etc.
- 5. Creating 3D model of a singly story building from given plan.
- 6. Developing interior design for a singly story building.
- 7. Drawing sanitary connections.
- 8. Basic rendering tools for V-ray.
- 9. Creating high-definition 2D pictures using sketchup.
- 10. Creating 3D motion videos using sketch.

Text Books:

- Bill Fane, Mark Harrison, Josh Reilly, "SketchUp for Dummies", For Dummies, 1st edition, 2020.
- Michael Brightman, "The SketchUp Workflow for Architecture: Modeling Buildings, Visualizing Design, and Creating Construction Documents with SketchUp Pro and LayOut", Wiley, 2nd edition, 2018.
- 3. N. Sreenivasulu, S. Rama Rao, "Civil Engineering Drawing-I", Radiant PublishingHouse.
- 4. N. Sreenivasulu, "Civil Engineering Drawing-II", Radiant Publishing House

Course Title	Comm	unit	y Servi	ce Pr	oject	B.Tech CE V	Sem (R	20)
Course Code	Category	I	Hours/W	'eek	Credits	Maximum	n Marks	
2001509	PROJ	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		0	0	3	3	100		100
	Mid Exam	Dur	ation:			End Exam Du	iration:	
Course Obj	ectives:							
To see	nsitize the studer	nts to	o the livi	ng con	ditions of the	people who are aro	und then	n
• To he	elp students to rea	alize	the starl	k realit	ies of the soci	ety		
To br	• To bring about an attitudinal change in the students and help them to develop societal							
consc	consciousness, sensibility, responsibility and accountability							
• To m	• To make students aware of their inner strength and help them to find new /out of box							
soluti	ons to the social	prol	olems.					
• To m	ake students soci	ally	responsi	ble cit	izens who are	sensitive to the nee	eds of the	•
disad	vantaged section	S	-					
• To he	elp students to ini	itiate	e develop	menta	l activities in	the community in c	oordinati	ion
with	public and govern	nme	nt author	rities				
Course Out	comes: On succe	ssfu	l comple	tion of	this course, the	he students will be	able to	
CO 1	Positive impact	on s	tudents'	acader	nic learning in	n view of the classr	oom to fi	ield
01	and vice versa e	xpe	rience					
CO 2	Improves studer	nts'	ability to	apply	what they hav	ve learned in "the re	eal world	"
	Positive impact	on a	cademic	outco	mes such as d	emonstrated comple	exity of	
CO 3 understanding, problem analysis, problem-solving, critical thinking, and cognitive							nitive	
	development							
CO 4	Improved ability	y to	understa	nd con	plexity and a	mbiguity		
CO 5	Greater academi greater opportur	ic le nity	arning, le	eadersł	nip skills, and	personal efficacy c	an lead t	0

A student may complete the Community Service Project before the beginning of 5th semester and the evaluation and credits will be awarded in 5th semester through internal assessment process only. The award of credits will be based the performance in Viva-Voce and report submitted. The duration and time frame of the Community Service Project are given below:

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.

- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secreteriats could be aligned for the survey.
- 2. Community Awareness Campaigns (Two Weeks)
 - Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.
- 3. Community Immersion Programme (Four Weeks)
 - Along with the Community Awareness Programmes, the student batch will work along with any one of the below listed governmental agencies and do service in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics while serving the people. Programmes could be in consonance with the Govt. Departments.
- 4. Community Exit Report (One Week)
 - During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks work to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which shall be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

B.Tech VI SEM - CE (R20UG)

Course Title	Environmen	tal En	B.Tech CE VI Sem (R20)					
Course Code	c Category	Hou	Hours/Week Credits			Maximum	Marks	
						Continuous	End	
2001/01	Professional Core	L	Т	Р	С	Internal	Ena	Total
2001601	(PCC)					Assessment	Exam	
		3	0	0	3	40	60	100
Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs								Hrs
Course Objectives:								
To ge	• To get the knowledge of water sources, standards, treatment of water for distribution to the							
dome	stic purpose.							
To est	imate sewage and storm wa	ater fro	m tow	ns an	d to design	the sewage		
• To un	derstand the design and ope	ration	of wa	stewa	ter treatmer	nt units.		
To ill	ustrate solid waste, air and r	noise p	ollutio	ons.				
Course Outc	omes: On successful comp	letion of	of this	cours	e, the stude	ents will be able to		
CO1 Knov	w the various sources, quali	ty stan	dards	of wa	ter.			
CO 2 Acqu	ire knowledge on different	treatm	ent m	ethod	s of water.			
CO 3 Plan	Plan efficient water distribution network to supply as per demand.							
CO 4 Estir	Estimate the waste water quantity; collection and testing of various properties of sewage.							
CO 5 Und	erstand the various biologic	al trea	tment	meth	ods of wast	e water treatment.		

<u>UNIT-I</u>

Introduction, Sources & Impurities

Introduction - Water supply - Objectives of water supply systems - Water supply scheme -

Quantity of water - Design period - Per Capita Consumption - Fluctuations in demand pattern -

population forecast – Arithmetic, Incremental, Geometric methods.

Sources of water – Surface and Sub Surface – Quality of water - Physical, chemical and biological aspects - Impurities in water - Waterborne diseases – Drinking water quality standards.

<u>UNIT – II</u>

Treatment

Flowchart of water treatment plant - Treatment methods (Theory and Design) – Sedimentation - Coagulation – Filtration – slow sand, rapid sand - Disinfection – Aeration - Softening of Water – Defluoridation.

<u>UNIT – III</u>

Water Distributions: Requirements - Layout of Water distribution systems – Design by Hardy Cross method - Laying of pipe lines – Waste detection and prevention.

Waste water & Estimation: Definition of Terms – Sewage, Sullage, Storm Water and Sludge, Estimation of Sewage – Dry weather Flow and Wet weather flow – Average, Peak and Minimum Sewage Flows - problems.

<u>UNIT – IV</u>

Collection of Sewage: Separate and Combined Sewers with their Merits and Demerits – Hydraulic Design of Sewers for Full and Partial Flow System – Self Cleansing Velocity of Sewers – Sewer Appurtenances and their Location.

Characterization of Sewage: Chemical Composition of Sewage – Solids, BOD and COD, Nutrients and Biological Impurities – Numerical Problems on BOD Equation – Population Equivalent.

<u>UNIT – V</u>

Biological Treatment: Preliminary – Design of Screen, Grit Chamber - Primary Sedimentation Tank - Secondary – Design of Suspended and Attached Growth of Biological System – Oxidation Ponds - Tertiary treatment – Removal of Nitrogen, Phosphorus - Standards for Disposal of Treated Sewage into Inland Surface Waters, Marine Disposal and on Land for Irrigation - Design of Septic Tank and Soak Pits.

Text Books:

- 1. B C Punmia, Ashok Kumar Jain & Arun Kumar Jain "Wastewater Engineering", Lakshmi Publications, New Delhi.
- 2. G.S. Birdie and J. S. Birdie, "Water Supply and Sanitary Engineering", 8th Edition, Dhanpat Rai and Sons Publishers, New Delhi, 2010.
- K.N. Duggal, "Elements of Environmental Engineering", 1st Edition, S.Chand Publishers, New Delhi, 2010
- 4. S.K. Garg, "Environmental Engineering (Vol. I): Water Supply Engineering", 20th Revised Edition, Khanna Publishers, New Delhi, 2011

- 1. K.N. Duggal, "Elements of environmental engineering", S. Chand Publishers
- 2. H S Peavy and D R Rowe, "Environmental Engineering" Tata McGraw-Hill Companies, Inc. New York.
- 3. Met Calf & Eddy, "Wastewater Engineering Treatment and Reuse", Tata McGraw-Hill Companies, Inc. New York.
- 4. G.S. Birdi, Dhanpat, "Water supply and sanitary Engineering", Rai & Sons Publishers.

Course T	itle Water Resource	Water Resources Engineering							
Course C	ode Category	Hours	s/We	ek	Credits	Maximum Marks			
200160	2 Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs									
Course Objectives:									
• To	• To study the different measures to prevent damages of Floods and their remedial measures.								
• To	study the various factors considering	g for con	struc	tion	of differen	t head works			
• To	study the different components and	their app	licati	ons					
• To	study the various design procedures	and their	r eng	inee	ring signif	icances			
• To	study the different tools required for	knowin	g per	forn	nance of w	ater resources p	rojects		
Course Ou	itcomes: On successful completion	of this co	ourse	, the	students v	vill be able to	5		
CO 1	Understand different energy dissipa	tion met	hods	in s	pillways.				
CO 2	Know the concepts and design principles of various types of falls in canals.								
CO 3	Know the design principals of canal regulatory works.								
CO 4	Identify suitable site location for var	rious cro	ss dr	aina	ge works a	nd their design	principle	s.	

CO 5 Know different water resources development projects across the nations and its strategies.

UNIT-I

Spillways

Types of Spillways - Necessity and Components of Spillways - Applications of Spillways -

Design Principles of Ogee Spillways – Types of Spillway Gates – Energy Dissipation Methods.

<u>UNIT – II</u>

Canal Structures – 1

Types of Falls and Their Location – Design Principles of Sarda type Fall – Trapezoidal Notch Fall and Straight Glacis Fall.

<u>UNIT – III</u>

Canal Structures – 2

Canal Regulation Works – Principles of Design, Distribution, Head Regulator – Canal Outlets – Types of Canal Modules – Proportionality, Sensitivity and Flexibility.

UNIT – IV

Cross Drainage Works

Types of Selection of Site – Design Principles of Aqueduct – Siphon Aqueduct and Super Passage.

$\underline{UNIT} - \underline{V}$

Water Resources Planning

Introduction to Indian Water Resources – Scenario of Water Use – Purpose of Water Resource Development – Classification of Water Resources – Development Projects – Project Evaluation – Strategies for Future – Planning Strategies – Management Strategies.

Text Books:

- 1. G L Asawa "Irrigation and Water Resources Engineering", New Age International (P) Limited, Publishers, New Delhi.
- R S Varshney, S C Gupta and R L Gupta "Theory and Design of Irrigation Structures", Nem Chand & Bros Publishers, Roorkee, Uttarakhand.
- Loucks D.P. and van Beek E., "Water Resources Systems Planning and Management", UNESCO Publishing, The Netherlands.

- Satya Narayana Murty Challa "Water Resources Engineering Principles and Practice", New Age International (P) Limited, Publishers, New Delhi.
- B C Punmia, Pande B B Lal, Ashok Kumar Jain & Arun Kumar Jain "Irrigation and Water Power Engineering", Lakshmi Publications, New Delhi.
- David A. Chin, "Water-Resources Engineering", SI Edition, Third Edition, Pearson Education, 2019.
- 4. Larry W. Mays, "Water Resources Engineering", Wiley, 2nd edition, 2010.

Cou Tit	rse Design of Reinford	ced C	Concr	ete St	ructures	B.Tech CE VI	Sem (R	(20)
Cou Co	rse Category	Ho	urs/V	Veek	Credits	Maximum	n Marks	
2001	603 Professional Core (PCC)	L T P		С	Continuous Internal AssessmentEnd Exam		Total	
		3	0	0	3	40	60	100
	Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs							
Course • •	 Course Objectives: To define and introduce the different design philosophies of Reinforced Cement Concrete. To implement the Limit State Method for design of rectangular section beams. To design two way slabs and dog-legged staircase To design the short and long columns for axial load, uniaxial and by-axial bending conditions To Design the isolated and combined footings. 							
Course	e Outcomes: On successful	$\frac{\text{comp}}{1}$			is course, ti	ne students will be	able to	
CO 1	Know the various design p Limit State Method.	hilos	ophie	es and a	analyse the	rectangular beam s	ection us	sing
CO 2	Design the beam for flexur	al, sh	lear a	nd tors	sional loadi	ing conditions.		
CO 3	Design the RCC slabs with different support conditions and staircases.							
CO 4	Design the RCC columns for different loading conditions.							
CO 5	Design isolated and combi	ned f	ootin	g for g	iven SBC.			

UNIT-I

Introduction

Introduction to working stress and limit state methods-characteristic values & partial safety factors, Stress-strain curves for concrete & steel. Limit State Method: Stress Block Parameters as per IS 456 -2000, Under reinforced-over reinforced-balanced sections, analysis of rectangular section beams using limit state methods.

<u>UNIT – II</u>

Limit State Design for Flexure, Shear, Torsion and Bond

Design of singly & double reinforced rectangular beams for flexure. Design of rectangular sections for shear and torsion. Design for Bond –Anchorage and Development length of bars

<u>UNIT – III</u>

Design of Slabs and Staircase

Design of two way slabs with different end conditions (IS Code Method). Design of dog-legged staircase.

<u>UNIT – IV</u>

Design of Compression Members

Short Column - Columns with axial loads, uni-axial and bi-axial bending – Use of design charts-Long column – Design of long columns - IS Code provisions

<u>UNIT – V</u>

Design of Foundation

Different types of footings –Design of flat isolated square, rectangular, circular footings and combined footings for two columns.

Text Books:

- 1. B C Punmia, Ashok Kumar Jain & Arun Kumar Jain "Comprehensive RCC Design", Laxmi Publications, New Delhi.
- 2. N. Subramanian, "Design of Reinforced Concrete Structures", Oxford University Press
- S. Unnikrishna Pillai & Devdas Menon, Reinforced Concrete Design, TMH, New Delhi. 3rd Edition 2009
- M.L. Gambhir, "Fundamentals of Reinforced concrete design", PHI, New Delhi.2nd Edition 2010

- 1. Ashok. K Jain "Reinforced Concrete: Limit State Design", Nem Chand & Bros, Roorkee.
- 2. N Krishna Raju and R N Pranesh "Reinforced Concrete Design: IS: 456-2000 Principles and Practice", New Age International (P) Limited, Publishers, New Delhi.
- 3. P.C. Varghese, "Limit state designed of reinforced concrete", PHI Learning Pvt. Ltd.
- 4. N.C. Sinha and S.K Roy, "Fundamentals of Reinforced Concrete", 4th Edition, S. Chand publishers, 2004.

Cours	se Title	Pre-Stressed	Pre-Stressed Concrete						20)
Cours	se Code	Category	Hours/Week Credits			Credits	Maximum	n Marks	
2001604		Professional Elective (PEC)	L	Т	Р	С	ContinuousEndInternalExamAssessmentT		Total
			3	0	0	3	40	60	100
	Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs								
Course	Course Objectives:								
To give	To give idea on methods available on pre-stressed concrete and analysis of pre-stressed members and								
design	of membe	ers.							
Course	e Outcom	es: On successful completior	n of thi	s cou	rse, t	the student	s will be able to		
CO 1	Classify	and differentiate the design p	orincip	les of	f pre-	-stressed co	oncrete over reinfo	rced con	crete
	and its a	dvantages and limitations.							
CO 2	Identify	the losses in pre-stressed men	mbers	due t	o sho	ort and long	g term deformation	s.	
CO 3	Design the	he pre-stressed concrete bear	ns for	flexu	re as	per codal	recommendations.		
CO 4	Design the	he pre-stressed concrete bear	ns for	shear	as p	er codal re	commendations.		
CO 5	Identify the factors influencing deflections and design of pre-stressed beams under deflection								
	criteria.								

<u>UNIT-I</u>

Introduction: General Principles of Pre-Stressed Concrete Members – Advantages and Limitations of Pre-Stressed Concrete – Comparison of Pre-Stressed Concrete Beams with Reinforced Concrete Beams.

Systems of Pre-Stressing: Classification of Pre-Stressed Concrete Members, System of Pre-Stressing, Pre-Tensioned System, Stability of the System. Hoyer System, Magnel Blaton System, Freyssinet System, Gifford Udall System, P.S.C Mono Wire System, C.C.L Standard System, LEE-MCCALL System.

<u>UNIT – II</u>

Losses of Pre-Stresses: Loss of Pre-Stress in Pre-Tensioned and Post-Tensioned due to Various Causes Like Elastic Shortening of Concrete, Shrinkage of Concrete, Creep of Concrete, Relaxation of Stress in Steel, Slip in Anchorage Bending of Member and Wobble Frictional Losses.

<u>UNIT – III</u>

Analysis and design of sections for flexure: Assumptions, Analysis by Stress Concept – Elastic Analysis of Concrete Beams Pre-Stressed with Straight, Concentric, Eccentric, Bent and Parabolic Tendons – Design of Pre-Stressed Concrete Beams – I.S Recommendations as per IS 1343 Code Book – Design of Rectangular and an I-Section of a Beam – Lever Arm Concept – Kern Distance.

<u>UNIT – IV</u>

Shear Design of PSC Beam: Design of Shear based on IS 1343 Code Book – Design of Beam.

<u>UNIT – V</u>

Deflections of Pre-Stressed Concrete Beams: Importance of Control of Deflections – Factors Influencing Deflections – Short Term Deflections of Uncracked Members Prediction of Long Term Deflections.

Text Books:

- 1. S Ramamrutham, "Pre-Stressed Concrete", Dhanpat Rai Publishing Company (P) Limited, New Delhi.
- 2. N Krishna Raju, "Pre-Stressed Concrete", Tata McGraw-Hill Companies, Inc. New York.
- 3. N Rajagopalan, "Pre-Stressed Concrete", Narosa Publishing House, New Delhi.
- M.K.Hurst, "Prestressed Concrete Structures", Tata Mc.Graw Hill Publications, 2nd Edition,2009.

- IS 1343-2012 "Indian Standard Code of Practice for Prestressed Concrete", Bureau of Indian Standards, New Delhi.
- 2. P.Dayaratnam, "Pre-stressed Concrete Structures", Oxford & IBH Publishers, Fourth Edition.
- K. U. Muthu, Agmil Ibrahim, Maganti Janardhana, M. Vijayanand, "Pre-stressed Concrete", PHI Publishers, 2016
- T.Y. Lin & N.H. Burns, "Design of Pre-Stressed Concrete Structures", John Wiley & Sons, 3rd Edition, 2005.

Course Title	Bridge E	Engin	B.Tech CE VI Sem (R20)					
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks		
2001605	Professional Elective (PEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
	Mid Exam Duration:	End Exam Dura	ation: 3	Hrs				

Course Objectives:

- To acquire knowledge about bridges and its components, different types of loading s and IRC classification of loading and its importance.
- To understand about analysis and design about square box culvert.
- To make the students able to analyze deck slab bridges and its importance.
- To give knowledge about analysis and design of T-beam bridges and various types of class 'AA' loadings acting on T-beam bridges.
- To understand about piers, abutments, various forces acting on piers & abutments. And also design principles of various bridge bearings.

Course	Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Know the site selection parameters and various loads on bridge structures.						
CO 2	Analyse & Design of box culvert under classified loads.						
CO 3	Analyse and Design deck slab bridge according to IRC codes						
CO 4	Analyse & Design of T-beam bridge subjected to class 'AA' tracked vehicles loading conditions.						
CO 5	Understand the design principles and learn stability aspects of piers, abutments and bridge						
	bearings.						

<u>UNIT-I</u>

Introduction

Importance of Site Investigation in Bridge Design - Highway Bridge Loading Standards -

Impact Factor - Railway Bridge Loading Standards (B.G & M G Bridges) - Various Loads in

Bridges.

<u>UNIT – II</u>

Design of Box Culvert

General Aspects – Design Loads – Design of Box Culvert Subjected to R C Class AA Tracked Vehicles only.

<u>UNIT – III</u>

Design of Deck Slab Bridge

General Features – Effective Width Method of Analysis; Design of Deck Slab Bridge (Simply Supported) subjected to Class AA Tracked Vehicles only.

UNIT – IV

Design of T-Beam Bridge

General Features – Design of Interior Panel of Slab – Pigeaud's Method – Design of a T- Beam Bridge Subjected to Class AA Tracked Vehicles only.

$\underline{UNIT} - \underline{V}$

Piers, Abutments and Bridge Bearings

General Features – Bed Block – Material Piers & Abutments – Types of Piers – Forces Acting on the Piers – Stability Analysis of Piers – General Features of Abutments – Forces Acting on Abutments – Stability Analysis of Abutments – Types of Wing Walls – Approaches – Types of Bridge Foundations (Excluding Design)

Bridge Bearings

General Features – Types of Bearings – Design Principles of Rocker & Roller Bearings – Design of Steel Rocker Bearings – Design of Elastomeric Pad Bearings

Text Books:

- 1. S Ponnuswamy, "Bridge Engineering", Tata McGraw-Hill Companies, Inc. New York.
- N Krishna Raju, "Design of Bridges", Oxford & IBH Publishing Company (P) Limited, New Delhi.
- 3. V.N. Vazirani and M.M. Ratwani M.G. Aswani, "Design of Concrete Bridges", Khanna Publishers, 1995.
- 4. B.C. Pumai, Jain & Jain, "Design of RC Structures", Lakshmi Publications.

- IS 800-2007 "Indian Standard Code of Practice for General Construction in Steel", Bureau of Indian Standards, New Delhi.
- IS 456-2000 "Indian Standard Plain and Reinforced Concrete Code of Practice", Bureau of Indian Standards, New Delhi.

- 3. IRC 6-2000 "Standard Specifications and Code of Practice for Different Types of Loadings Acting on the Bridge Structure", The Indian Roads Congress, New Delhi.
- IRC 22-2000 "Standard Specifications and Code of Practice for Road Bridges and Different Materials used in Bridge Structures and Reinforcement Details", The Indian Road Congress, New Delhi.
- 5. IRC 24-2000 "Standard Specifications and Code of Practice for Permissible Bending Stresses in Steel and its Properties", The Indian Road Congress, New Delhi.
- IRC 83-2000 "Standard Specifications and Code of Practice for Different Types of Bridge Bearings used in the Bridges and its Detailed Specifications", The Indian Road Congress, New Delhi.

Course Ti	le	Traffic En	B.Tech CE VI Sem (R20)						
Course Co	de	Category	Hours	s/We	eek	Credits	Maximum Marks		
2001606	Pr	ofessional Elective (PEC)	L T P			С	ContinuousEndInternalExamAssessmentExam		Total
			3	0	0	3	40	60	100
Mid Exam Duration: 1.5 Hrs							End Exam Du	ration: (3 Hrs
Course Obj	ectives: To	set a solid and firm fo	oundatio	n in					
Traff	ic engineer	ring management.							
Traff	ic regulation	on means and measures	s.						
Conc	ept of high	way capacity.							
Road	safety								
Conc	epts of traf	fic flow theory							
Course Out	comes: On	successful completio	n of thi	s co	urse	, the stude	nts will be able to	D	
CO1 Just	fy the nee	d for traffic manageme	ent.						
CO 2 Imp	lement diff	ferent traffic regulation	ns.						
CO 3 App	ly highway	y capacity concept for	designir	ng ar	ıd ev	aluating va	rious traffic mana	agement	means
and	measures.								
CO 4 Des	gn and im	plement various road s	afety en	han	ceme	ent measure	es.		
CO 5 Inte	pret, analy	vse data for simple situ	ations to	o pre	dict	the main cl	naracteristics of tr	affic flo	w.

<u>UNIT-I</u>

Traffic Management

Traffic management – scope of traffic management measures – restrictions to turning movements – one-way streets – tidal flow operations-Traffic segregation –Traffic calming- Exclusive bus lanes, Introduction to ITS

<u>UNIT – II</u>

Traffic Regulation

Regulation of traffic – Need and scope of traffic regulations- Motor Vehicle Act – Speed limit at different locations- regulation of the vehicle – regulations concerning the driver rules of the road enforcement

<u>UNIT – III</u>

Highway Capacity

Highway capacity: Its importance in transportation studies – basic, possible and practical capacity – determination of theoretical maximum capacity -passenger car units – level of service – concept in HC manual – factors affecting level of service.

<u>UNIT – IV</u>

Traffic Safety

Road Accidents-Causes and Prevention-Road and its effect on accidents-The Vehicle-The Driver-Weather and its effect on accidents-Speed in Relation of Safety-Collection of accident data-Condition Diagram and Collision Diagram-Traffic Management Measures and their Influence on Accident Prevention.

$\underline{UNIT} - \underline{V}$

Traffic Flow

Theory of traffic flow – scope – definition and basic diagrams of traffic flow- basic concepts of light hill – Whitham's theory – Introduction to Car 'following theory and queuing'.

Text Books:

- Khanna, S.K. and C.E.G. Justo, C.E.G., "Highway Engineering", Khanna Publishers, Roorkee, 2001.
- 2. Kadiyali, L.R., "Traffic Engineering and Transport Planning" Khanna Publishers, New Delhi
- Donald Drew, Traffic Flow Theory Chapter 14 in Differential Equation Models, Springer, 1983
- 4. Papa Costas C.S., "Fundamentals of Transportation Engineering", Prentice Hall, India

- Martin Whol & Brian V Martin, "Traffic system Analysis for Engineers and Planners", McGraw Hill, NY, 1967.
- 2. Highway Capacity Manual: HCM 2010 (3 volume set), TRB Publications, 2010
- Jotin Khisty, C. and Kent Lall, B., "Transportation Engineering An Introduction", Prentice-Hall.
- Salter, R.J. and Hovnsell, N.B., "Highway Traffic Analysis and Design", 3rd Edition, Macmillan Press Ltd, 1996.

Course Title	HUMA DEVELOPME	N R ENT Elec	ESOU (Huma tive)	RCE anities	B.Tech. VI Sem ECE, CE, -VI Sem ME, CSE, AI & ML, EEE – VI Sem				
Course Code	Category Hours/Wee Credi Maximum Marks k ts								
2006601/ 2006701	Humanities & Social	L	Т	Р	С	Continuous Internal Assessment	End Exam	Tot al	
	(HSMC)	3	0	0	3	40	60	100	
	Mid Exam Dura	tion	: 2Hrs			External Exam l	Duration:	3Hrs	
 To developresent represent represent	 To develop capability of all individuals working in an organization in relation to their present role To develop team spirit. To develop co-ordination among different units of an organization. To develop organization health by continuous reveal of individual capability keeping peace with the technological changes. To develop better interpersonal & employer-employee relationships in an organization. 								
CO1	To understand l	key f	function	ns in m	anageme	nt as applied in practic	ce.		
CO2	To understand in more specific management related areas from planning till controlling.								
CO3	To understand a structure	To understand about the authority and responsibility, and different organizational structure							
CO4	To understand organization.	abou	it the r	ole of	leadership	p, motivation and con	nmunicatio	n in an	
CO5	To understand organizations.	l th	e imp	ortance	e of glo	balization and dive	ersity in	modern	

Unit I

Introduction to Human Resource Development: Meaning, significance and objectives of Human Resource Development, Human Resource Management and Human Resource development functions, Human Resource Development challenges

Unit II

HRD Need Assessment & Designing of HRD programs: Strategic/ Organizational Analysis-

Task Analysis- Person Analysis- prioritizing HRD needs, defining the objectives of HRD Intervention - Selecting the trainer - Selecting the Training methods - Preparing training material Scheduling an HRD program

Unit III

Implementation & Evaluation of HRD programs: Training methods - Classroom training Approaches - Computer based Training, Purpose of HRD Evaluation- Kirkpatrick's evaluation frame work - Data collection for HRD Evaluation - Assessing the impact of HRD programs in Monetary Terms

Unit IV

Career Management and Development: Introduction to Career management, meaning - Stages of life and Career Development - process of career Development - Issues in career development.

Unit V

HRD & Diversity: Introduction – Organizational culture – Labor Market changes and discrimination adapting to demographic changes

Text books:

- 1. Jon M Werner, Randy L De Simone: Human Resource development (Thomson/Cengage)
- 2. Raymond A Noe: Employee Trainee Development (Tata McGraw Hill)
- 3. Dr. D.K Bhattacharya, Himalaya Publishing House

References:

- 1. John P. Wilson Human Resource Development (Kogan Page Business Books)
- 2. Tripathi P.C : Human Resource Development (Sultan Chand & Sons)
- 3. Uday Kumar Haldar : Human Resource Development (Oxford)

Course Title	Digita (Humaniti	ll Mar es Opo	keti en E	B.Tech. VI Sem ECE, CE, -VI Sem ME, CSE, AI & ML, EEE – VII Sem					
Course Code	Category	Hou ek	ırs/V	We	Credits	Maximum Marks			
2006602/ 2006702	Humanities & Social Sciences (HSMC)	L T P C			С	Continuous Internal Assessment	End Exam	Tot al	
	3 0 0 3					40	6 0	100	
	Mid Exam Duration	on: 2H	Irs			External Exam Duration: 3Hrs			
 Understationand/or means Learn to or Understational Video, means Learn how 	 Understand how and why to use digital marketing for m and/or media strategy. Learn to develop, evaluate, and execute a comprehensiv Understand the major digital marketing channels - or video, mobile, search engine, and social media Learn how to measure digital marketing efforts and calc 				eting for mu nprehensive annels - onl ia rts and calcu	ltiple goals within digital marketing line advertising: I late ROI	a larger m strategy ar Digital dis	arketing nd plan. play,	
Course Outo	comes: On success Co	omple	tion	This	course, the	students will be ab	ole to		
CO1	Analyze the conflution time delivery.	uence	of m	narke	eting, operati	ons, and human re	esources in	real-	
CO2	Demonstrate cognitive knowledge of the skills required in conducting online research and research on online markets, as well as in identifying, assessing and selecting digital market opportunities.								
CO3	Explain emerging digital marketing t	trend	ls in y ap	ı dig plyir	gital marketi ng relevant n	ng and critically narketing theories	assess the and frame	e use of works.	
CO4	Investigate and constantly changir	evaluang and	te i incr	ssue easii	s in adaptin ngly network	ng to globalized ted.	markets	that are	
CO5	Interpret the trad extended range of	itional digita	ma l stra	rketi ategio	ing mix wit	hin the context of s.	of a chang	ging and	

UNIT - I

Understanding Digital Marketing: Concept, Components of Digital Marketing, Need and Scope of Digital Marketing, Benefits of Digital Marketing, Digital Marketing Platforms and Strategies, Comparison of Marketing and Digital Marketing, Digital Marketing Trends.

UNIT - II

Channels of Digital Marketing: Digital Marketing, Website Marketing, Search Engine Marketing, Online Advertising, Email Marketing, Blog Marketing, Social Media Marketing, Mobile Marketing, Migrating from Traditional Channels to Digital Channels. Marketing in the Digital Era Segmentation – Importance of Audience Segmentation, How Different Segments use Digital Media - Digital Media for Customer Loyalty.

UNIT – III

Digital Marketing Plan: Need of a Digital Marketing Plan, Elements of a Digital Marketing Plan – Marketing Plan, Executive Summary, Mission, Situational Analysis, Opportunities and Issues, Goals and Objectives, Marketing Strategy, Action Plan, Budget, Writing the Marketing Plan and Implementing the Plan.

$\mathbf{UNIT} - \mathbf{IV}$

Search Engine Marketing and Online Advertising: Importance of SEM, Understanding Web Search – Keywords, HTML Tags, Inbound Links, Online Advertising vs. Traditional Advertising, Payment Methods of Online Advertising – CPM (Cost-per-Thousand) and CPC (Cost-per-Click), Display Ads - Choosing a Display Ad Format, Landing Page and its Importance.

UNIT – V

Social Media Marketing: Understanding Social Media, Social Networking with Face book, LinkedIn, Blogging as a Social Medium, Social Sharing with YouTube. Measurement of Digital Media: Analyzing Digital Media Performance, Analyzing Website Performance, Analyzing Advertising Performance.

Text Books:

- 1. Seema Gupta, Tata McGraw Hill.
- 2. Dave Chaffey, Pearson Education
- 3. Dr Antorny Puthussery

- 1. Kevin Hartman, Digital Marketing Analytics,
- 2. Digital Marketing Self learning management series, Vibrant Publishers
- 3. Digital Marketing, Vandana Ahuja, Oxford publishing house
- 4. Fundamentals of Digital Marketing, Puneet Singh Batia Pearson Education
- 5. Digital Marketing by Seema Gupta (IIM-B)
- 6. Digital Marketing: Strategy, Implementation ← & Practice by Dave Chaffey & Fiona Ellis Chad wick
- 7. Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation Damian Ryan and Calvin Jones.

Course Title		Proje Hum Electi	ct Man anities ve)	ageme Open	ent	B.Tech. VI Sem ECE, CE, -VI Sem ME, CSE, AI & ML, EEE – VII Sem					
Course Code	Category	ory Hours/Week Credi Maximum Marks									
2006603/ 2006703	Humanities & Social	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
	(HSMC)	3	0	0	3	40	60	100			
	Mid Exam Duration: 2Hrs						External Exam Duration: 3Hrs				
 To impart To develo monitorir To achieve To optimit To shape objectives 	 To impart the basic concepts of Project selection. To develop an understanding of Project Planning and design, construction and execution, monitoring and control, completion. To achieve the Project's main goal within the constraints. To optimize the allocated necessary inputs. To shape and reform the client's vision or tone got late with the masregards the project's objectives. 										
Course Outco	omes: On succe	ess Co	ompleti	on Thi	s course,	the students will be	able to				
CO1	Remembering and recalling the principles of project management and methods involved in the process of project management.										
CO2	Understand and controlli	ing c ng	of Proje	ct Plan	ning, des	ign, construction, ex	ecution, ma	aintaining			
CO3	Applying te	chnic	ues in I	Project	Evaluati	on, Scheduling and C	Controlling				
CO4	Classifying	and a	nalysis	s risks	in Project	management and pr	oject sched	luling			

UNIT-I

Introduction to Project Management: Need for Project management, Taxonomy of project, Project life cycle, Project management Process, Principles of Project Management. Project Identification and Selection, Pre – feasibility study, Project Planning Process, Resources allocation, Project Break-even Point.

UNIT-II

Financial Evaluation of Projects: Cost of the Project, Means of finance, Financial Evaluation of projects – Payback period method, Accounting Rate of Return method, Net Present Value method, Internal Rate of Return method, Benefit Cost Ratio method (Profitability Index), (simple Problems).

UNIT-III

Project Risk & Quality Management: Introduction, Role of Risk management, Risk Identification – Steps in risk management –, Risk analysis (Sensitivity Analysis, Probability Analysis, Mean – Variance Analysis Decision trees, Simulation), Techniques for managing risk. Project Quality Management and Value Engineering: Quality, Quality Concepts and Value Engineering.

UNIT-IV

Project Scheduling (Network Analysis): Development of Project network, Time estimation, Determination of the critical Path, PERT Model, Project Crashing.(Simple Problems)

UNIT-V

Project Execution & PMS: Process Of Project Execution and Control, Project Management Information System (PMIS), Project Performance Measurement and Evaluation (PPME).

Project Management Software: Essential Requirement of Project Management Software, Common Features available in most of the project management software.

Text Books:

- 1. Project management Best Practices: Achieving Global Excellence by Harold Kerzner; John Wiley & Sons; 3rd edition.
- 2. Project Management: Engineering, Technology and Implementation: united states Edition by Avraham Shtub and Jonathan F. Bard, Pearson; 1st edition.
- 3. The Essentials of Project Management by Dennis Lock; Routledge.
- 4. Prasanna Chandra, Projects, Tata Mc Graw Hill.
- 5. Nagarajan K, Project Management 4th edition, New Age International(P)Ltd.
- 6. L S Srinath, PERT/CPM, AffiliatedEast-WestPress2005.

- 1. Project management by Stephen Hartley; Routledge, 4th Edition.
- 2. Project management: a systems Approach to Planning, Scheduling, and controlling by Harold Kerzner; Wiley; 12th edition.
- 3. Project Management & Appraisal by Sitangshu Khatua; published by Oxford University.
- 4. Nicholas J.M. & Steyn H, Project Management, Elsevier, Himalaya publications.
- 5. Narendra Singh, Project Management and Control, HPH,2003.
- 6. Harvey Maylor, Project Management, Pearson Education.
- 7. Panneer selvam Senthil kumar, Project Management, PHI.

Course Title	Consti (Mano	ituti lato	on of I ry Cou	ndia 1rse)	B.Tech. V Sem ME, CSE & EEE-V Sem CE & ECE- VI Sem				
Course Code	Category	Category Hours/Wee Credi k ts					Maximum Marks		
20MC509/ 20MC609	Humanities & Social	ities L T P			С	Continuous Internal Assessment	End Exam	Tot al	
	(HSMC)	2	0	0	0	40	00	40	
	Mid Exam Dur	atio	n: 2H	rs		External Exa	m Duration	:-	
 CourseObjectives: The main objective of the course to learn To realize the significance of the constitution of India to students from all walks of life and help them to understand the basic concepts of Indian constitution. To identify the importance of fundamental rights as well as fundamental duties. 									
 To un federa To le comm 	aderstand the fund al system. arn procedure an arssion and amenda	d ef	fects of the process	of eme dure.	n, State	composition and	activities of	e Indian election	
CourseOut	comes:Onsuccess	Com	pletion	n Thisc	ourse,the	studentswillbeable	eto		
CO1	Describe the hist for building a der	toric moci	al bacl ratic In	kgroun dia.	d of the	constitution makin	ig and its im	portance	
CO2	Explain the functioning of three wings of the government i.e., executive, legislative and judiciary.								
CO3	Explain the valu of India.	e of	the fu	ndame	ntal right	s and duties for be	ecoming good	d citizen	
CO4	Analyze the de government.	cent	ralizati	on of	power 1	between central,	state and lo	ocal self	
CO5	Apply the knowl Election Commis	ledge ssior	e in str 1 and U	engthe	ning of t or sustain	he constitutional in ing democracy	nstitutions lik	ke CAG,	

Unit - 1:

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution – Sources and constitutional history, Features – Citizenship, Fundamental Rights and Duties, Directive Principles of State Policy.

Unit - 2:

Union Government and its Administration Structure of the Indian Union: Center-State

relationship, President: Role, power and position, PM and Council of ministers, Cabinet a

nd Central Secretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers and Functions.

Unit - 3:

State Government and its Administration Governor – Role and Position – CM and Council of ministers, State Secretariat: Organization, Structure and Functions.

Unit - 4:

Local Administration: District's Administration Head – Role and Importance, Municipalities – Mayor and role of Elected Representative – ZillaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy – (Different departments), Village level – Role of Elected and Appointed officials.

Unit - 5:

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissioner State Election Commission:, Functions of Commissions for the welfare of SC/ST/OBC and women.

Textbooks

1. M.V.Pylee, "Introduction to the Constitution of India",4th Edition, Vikas publication,2005.

2. Durga Das Basu(DD Basu), "Introduction to the constitution of India", (Student Edition), 19th edition, Prentice-Hall EEE, 2008.

Reference Books:

- Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.. New Delhi
- Subhash Kashyap, Indian Constitution, National Book Trust
- J.A. Siwach, Dynamics of Indian Government & Politics
- D.C. Gupta, Indian Government and Politics
- H.M.Seervai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)

E-Resources:

- nptel.ac.in/courses/109104074/8
- nptel.ac.in/courses/109104045/
- nptel.ac.in/courses/101104065/
- www.hss.iitb.ac.in/en/lecture-details
- www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Title	Environmenta	Environmental Engineering Lab						
Course Code	Category	Hou	urs/W	eek	Credits	Maximum Marks		
2001607	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		0	0	3	1.5	40	60	100
	Mid Exam Duratie	End Exam Du	ration:	3 Hrs				
Course Object	ives:							
 To anal 	yze the Waste water sources	s and w	aste wa	ater ch	aracteristic	S.		
To Con	pare the results on estimation	ng vario	ous par	amete	rs like pH,	Chlorides, and di	fferent s	olids
in wate	- - -	-	-		-			
Status of	f Industrial effluents will al	so be ta	ught in	n the la	aboratory b	y estimating BOI) and CC	DD of
effluent			-		·			
Course Outco	mes: On successful complet	ion of t	his cou	urse, tł	ne students	will be able to		
CO1 Descri	be the knowledge of physica	al, chen	nical a	nd bio	logical para	meters of water a	and their	
import	ance.				0 1			
CO 2 Unders	stand and use the domestic v	vater sa	mpling	g proce	edures and	sample preservati	ions.	
CO3 Apply	the laboratorial results to pr	oblem i	identifi	ication	, quantifica	ation, and basic er	nvironme	ental
design	design and technical solutions.							
CO 4 Unders	stand and use wastewater sat	mpling	proced	lures a	ind sample	preservations.		
CO 5 Unders	stand and apply ethical issue	es assoc	iated v	vith de	cision mak	ing and professio	nal cond	luct in
the lab	oratory and field environme	ent.						
the lab	oratory and held environme	ш .						

List of Experiments:

- 1. Determination of various forms of Acidity
- 2. Determination of various forms of Alkalinity
- 3. Determination of pH in water
- 4. Determination of Chlorides content
- 5. Determination of Residual Chlorine
- 6. Determination of Turbidity in water
- 7. Determination of various forms of Solids
- 8. Determination of Hardness in water
- 9. Determination of Dissolved oxygen
- 10. Determination of Optimum Dosage of Coagulant

Augmented Experiments:

- 1. Determination of total iron in the water
- 2. Determination of fluoride in water
Text Books:

- 1. Dr. G Kotaiah and Dr. N Kumara Swamy "Environmental Engineering Lab Manual", Charotar Publishing House, Anand, Gujrat.
- S.K. Garg, "Environmental Engineering (Vol.I): Water Supply Engineering", 20thRevisedEdition, Khanna Publishers, New Delhi, 2011.

- 1. Clair N Sawyer, Perry L Mccarty and Gene F Parkin "Chemistry for EnvironmentalEngineering and Science", Tata McGraw-Hill Edition, New Delhi.
- CPHEEO, Ministry of Urban Development (1996), Manual on water supply and Treatment, New Delhi.

Course Tit	e Computer-Aided De	esign a	g Lab	B.Tech CE VI Sem (R20)				
Course Code	Category	Но	Hours/Week Credits			Maximum Marks		
2001608	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		0	0	3	1.5	40	60	100
Mid Exam Duration:End Exam Duration: 3 Hrs								
Course Ob	jectives:							
• To k	now how to apply engineering	g drawi	ing usin	g com	puters			
• To n	nake the student to understand	about	the sco	pe of A	Auto CAD	software		
• To t	each detailing of different rein	forced	cement	concr	ete compo	nents.		
Course Ou	tcomes: On successful comple	etion of	f this co	urse, t	he students	s will be able to)	
CO 1 1	Understand the process of deta	iling d	ifferent	buildi	ng compor	ents.		
CO 2	Apply AutoCAD tool for draw	ing an	d detail	of civi	l engineeri	ing components	5.	
CO 3 1	Provide proper detailing drawi	ng to c	ustome	r.				

Exercises:

- 1. Detailing of Reinforced Cement Concrete determinate beams.
- 2. Detailing of Continuous and indeterminate Reinforced Cement Concrete beams.
- 3. Detailing of circular and rectangular Columns.
- 4. Details of one-way and two-way slabs.
- 5. Detailing of Reinforced Concrete wall.
- 6. Detailing of Earth retaining structures
- 7. Detailing of rectangular and circular footing.
- 8. Detailing of different combined footings.
- 9. Detailing of different deep foundations.
- 10. Detailing of Over Head Water Tank.

Text Books:

- 1. N. Sreenivasulu, S. Rama Rao, "Civil Engineering Drawing-I", Radiant Publishing House.
- 2. N. Sreenivasulu, "Civil Engineering Drawing-II", Radiant Publishing House.
- 3. G C Sahu, Joy Gopal Jena, "Building Materials and Construction", McGraw hill Pvt Ltd 2015
- 4. Duggal, "Building Materials", New Age International

- 1. P. J. Sha, "Engineering Graphics", S. Chand & Co.
- 2. S. Mahaboob Basha, "Civil Engineering Drawing-I", Falcon Publishers
- 3. M. G. Shah, "Building drawing", Tata McGraw-Hill Education.
- 4. R. Chubby,"Construction Technology Vol I & II", Longman UK

Cour Titl	rse le	Advanced Concrete Technology Lab					B.Tech CE VI Sem (R20)			
Cour Cod	rse le	Category	Ног	ırs/W	/eek	Credits	Maximum Marks			
20016	509	Professional Core	L	L T P		С	Continuous Internal Assessment	End Exam	Total	
		(rcc)	0 0 3 1.		1.5	40	60	100		
	Mid Exam Duration: End Exam Duration: 3 Hrs									
Course	e Obje	ectives:								
•	To co	onduct laboratory t	ests to	o find	l the s	suitability	of the design of concre	ete mixes		
Course	e Out	comes: On success	sful co	omple	etion	of this cou	rse, the students will b	be able to		
CO 1	The	behavior of fresh o	concre	ete wi	th ad	vanced me	ethods.			
CO 2	Find	out the crushing s	trengt	th of I	harde	ened concre	ete and its crack patter	n during th	e	
	testii	ng.	-					_		
CO 3	The	behavior of concre	ete aga	ainst	sever	e exposure	e conditions.			
CO 4	Unde	erstand the effect of	of Che	emica	ls on	the proper	rties of concrete.			

List of Experiments:

- 1. Determination of workability of concrete by Vee-bee Consistometer test.
- 2. Determination workability of concrete by Flow table test.
- 3. Determine Young's Modulus of concrete and draw the graph.
- 4. Determine Compressive strength of the concrete using Non-Destructive testing by Rebound Hammer.
- 5. Determination of Rapid chloride permeability Number by using RCPT as a durability parameter.
- 6. Determine Compressive strength of concrete in Acid Curing and Compare its strength with Conventional concrete
- 7. Determine of Compressive strength of concrete in Sulphate solution curing and compare its strength with Conventional concrete.
- 8. Determination of carbonation depth of concrete.
- 9. Determine the behaviour of beams under shear.

Text Books:

1. M S Shetty "Concrete Technology – Theory and Practice", S Chand & Company Limited, New Delhi.

Reference Books:

1. Hemant Sood, L N Mittal and P D Kulkarni "Laboratory Manual on Concrete Technology", C B S Publishers and Distributors, New Delhi.

B.Tech VII SEM CE (R20)

Cour	rse Title	Ground Improve	men	t Tec	ues	B.Tech CE VII Sem (R20)			
Cour	se Code	Category	Hou	ırs/W	'eek	Credits	Maxim	um Marks	
20	01701	Professional Elective (PEC III)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0	0	3	40	60	100
Mid Exam Duration: 1.5 Hrs End Exam Duration: 3								8 Hrs	
Course	e Objective	s:							
• To learn and understand various ground improvement technique.									
• To learn various method of compaction for ground improvement in its strength.									
٠	To learn va	rious physical and chemic	al mo	difica	tion f	or ground	improvement		
•	To learn the	e method to choose the fou	Indati	on an	d or ti	eatment m	ethod based on	the site con	dition
Course	e Outcomes	: On successful completio	n of t	his co	urse,	the student	ts will be able to)	
CO 1	Select the strengthen	ground improvement tec	chniqu	ie wh	hich is	s suitable	and economica	l for soil	
CO 2	Select diff	erent techniques based on	the va	arious	types	of soils in	ı-situ		
CO 3	Design rei	nforced earth structures							
CO 4	Exposed to the knowledge on use of geosynthetic material								
CO5	Understan	d the behavior of expansiv	e soil	s and	desig	n foundati	ons in expansive	e soils	

<u>UNIT-I</u>

Introduction

Need for engineered ground improvement, classification of ground modification techniques; suitability, feasibility and desirability of ground improvement technique; objectives of improving soil.

Stabilisation

Methods of stabilization-mechanical-cement- lime bituminous- chemical stabilization with calcium chloride, sodium silicate and gypsum.

<u>UNIT-II</u>

Densification Methods in Granular Soils

In – situ densification methods in granular Soils – Vibration at the ground surface, Impact at the Ground Surface, Vibration at depth, Impact at depth.

Densification Methods in Cohesive Soils

In-situ densification methods in cohesive soils – preloading or dewatering, vertical drains – Sand Drains, Sand wick geodrains – Stone and lime columns – thermal methods.

UNIT-III

Dewatering

Methods of de-watering- sumps and interceptor ditches- single, multi stage well points - vacuum well points- Horizontal wells-foundation drains-blanket drains- criteria for selection of fill material around drains –Electro-osmosis.

Grouting

Objectives of grouting- grouts and their properties-grouting methods- ascending, descending and stage grouting- hydraulic fracturing in soils and rocks- post grout test.

UNIT-IV

Reinforced Earth

Principles – Components of reinforced earth – factors governing design of reinforced earth walls – design principles of reinforced earth walls.

UNIT-V

Expansive Soils

Problems of expansive soils – tests for identification – methods of determination of swell pressure. Improvement of expansive soils – Foundation techniques in expansive soils – under reamed piles

Text Books:

- 1. Dr. P. Purushothama Raj., "Ground Improvement Techniques", Lakshmi Publications Pvt. Ltd.
- 2. Jones, J.E.P., Earth Reinforcement and Soil Structure, Butterworths, 1985.
- 3. Koerner, R.M. and Welsh, J.P., Construction and Geotechnical Engineering using Synthetic Fabrics, John Wiley, 1990.
- 4. Koerner, R.M., Designing with Geosynthetics (Third Edition), Prentice Hall, 1997.

- 1. Moseley, M.D., Ground Treatment, Blackie Academic and Professional, 1998.
- 2. Hehn, R.W., Practical Guide to Grouting of Underground Structures, ASCE, 1996.
- 3. Das, B.M., Principles of Foundation Engineering, (Fourth Edition). PWS Publishing, 1999

Course Title	Quantity Esti	mation	of S	B.Tech CE VII Sem (R20)				
Course Code	Category	Hours/Week		Credits	Maximum Marks			
2001702	Professional Elective (PEC III)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
Mid E	End Exan	n Duration	: 3 Hrs					

Course Objectives:

- To impart basic knowledge on Estimation of structures and understand how to Estimate the quantities of engineering projects
- To know the importance of specifications in final cost of the structure.
- To understand how to prepare the rate of the different item of works with SSR and Data book
- To understand the contractual system in public works and know the importance of Valuation
- To gain basic knowledge on quantity estimation of other Civil Engg Structures

Course Outcomes: On successful completion of this course, the students will be able to

CO 1 Acquire knowledge on specifications of different items of work related to build construction.

CO 2 Estimated different items of works and prepare bar bending schedule.

CO 3 Do rate analysis of varies items of works as per Standard Schedule of Rates.

CO 4 Understand the different types of contracts and valuation methods.

CO 5 Estimate various items of works related to irrigation and road structures.

<u>UNIT-I</u>

Introduction to The Estimation

Importance of Estimation for Structures, units and items of works in structures, Methods of Estimation, Quantity Estimation of Single Room, Double Room and Multiple Rooms with Long wall and Short wall methods and Framed Structures.

Estimation of Bar Bending Schedule : Beams, columns, Slabs, Staircases, Sun shade, Lintels.

<u>UNIT – II</u>

Specifications of Different Item of Works

Specification of different items of works: Earth work for foundations, mortars, Plain cement concrete, Reinforced concrete roofing, Brick work, Stone masonry, RCC roof and AC roof and GI sheet roof structures, plastering, Painting, pointing and wood works.

<u>UNIT – III</u>

Rate Analysis

Rate Analysis of different item of works: Earthwork Excavation, Mortars of various proportions (cement and lime) – Concrete with various proportions (lime and Cement) – Brick Masonry,

Stone Masonry, Pointing, Painting, Plastering, cement concrete flooring with 1:2:4 mix, Ceramic and Vitrified Tile flooring.

$\underline{UNIT} - \underline{IV}$

Contracts and Valuation

Contracts: Types of contracts, contract document, conditions of contracts, contract procedure, termination of contracts, arbitration and tenders.

Valuation: Introduction, Technique of valuation, elements of valuation and factors affecting valuation, methods of valuation.

$\underline{UNIT} - \underline{V}$

Estimation of Irrigation and Road Structures

Estimate of bituminous and cement concrete roads, estimate of retaining walls, Estimation of Canals Dam structures

Text Books:

- 1. B N Dutta "Estimating and Costing in Civil Engineering", U B S Publishers Distributers Pvt. Limited, Noida.
- "Standard Data Book Vol.2", Andhra Pradesh Department of Standard Specifications, Amaravati.
- 3. Contracts and estimations by B.S.Patil, Universities.Press, Hyderabad
- 4. G.S. Birdie, Estimating and Costing, Danpatrai Publications, New Delhi, 2009

Reference Books:

1. S C Rangwala "Estimating Costing and Valuation", Charotar Publishing House Pvt. Limited, Anand.

2. M. Chakraborthi, Estimating Costing Specification and Valuation in Civil Engineering,23rd Edition, Laxmi Publications, New Delhi, 2010.

Course Title	Finite Element Method	B.Tech CE VII Sem (R20)
--------------	-----------------------	-------------------------

Cou	rse Code	Category	Hou	Hours/Week Credits			Maxin	num Mar	ks
20	001703	Professional Elective (PEC III)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0	0	3	40	60	100
	Mid Exam Duration: 1.5 HrsEnd Exam Duration: 3 Hrs								
Course	e Objective	s:							
To und	erstand the	concepts of Finite element me	ethods	to ar	nalyz	e critical	stress condition	ons instruc	ctures.
Course	e Outcomes	: On successful completion o	of this	cours	se, th	e studen	ts will be able	to	
CO 1	Understand	the fundamentals of the Finit	te Elei	nent	Meth	nods.			
CO 2	Derive Fini	te Element Formulation for or	ne din	nensi	onal	beam an	d bar elements	5.	
CO 3	CO 3 Apply two dimensional elements for analysis of structures.								
CO 4	Understand	isoperimetric elements and it	ts app	licati	ons i	n Finite I	Element Metho	ods.	
CO 5	Analyse va	rious structures for static load	ing co	onditi	ons ı	using Fin	ite Element M	lethods.	

<u>UNIT - I</u>

Introduction to Finite Element Method

Basic Concepts of FEM, Limitations, Finite Element Modelling and Discretization, Types of Elements, Nodes and Degrees of Freedom, Interpolation and ShapeFunctions

<u>UNIT–II</u>

One Dimensional

Local and Global coordinate systems - Finite element modelling - Stiffness matrix for Bar element, Flexure element - Element load vector - Equivalent nodal loads.

TRUSSES: Plane Trusses - Local and Global Coordinate Systems - Direction Cosines - ElementStiffness Matrix - Assembly of Global Stiffness Matrix - Stress Calculation.

<u>UNIT – III</u>

Two-Dimensional Elements

Two Dimensional Elements- Different types of elements for plane stress and plane strain analysis – Displacement models– generalized coordinates – shape functions – convergent and compatibility requirements – Geometric invariance – Natural coordinate system – area and volume coordinates.

UNIT - IV

Iso-Parametric Elements and Finite Element Modelling

Mesh Requirements - Material Properties - Loads and Reactions - Boundary Conditions - Checking the Model - Analysis and Design Software (For Practice Purpose Only)

UNIT - V

Solution Techniques

Numerical Integration, Static condensation, assembly of elements and solution techniques for static loads.

Applications of FEM

Plate bending problems - Finite elements in Fluid mechanics - Finite elements to elastic stability

Text Books:

- Daryl L Logan "A First Course in the Finite Element Method", Cengage Learning India Private Limited, New Delhi.
- 2. S S Bhavikatti "Finite Element Analysis", New Age International (P) Limited, Publishers, New Delhi.
- 3. Finite Element analysis Theory & Programming by C.S.Krishna Murthy- Tata Mc.Graw Hill Publishers
- 4. Finite element analysis by S.S. Bhavakatti-New age international publishers

- 1. Robert D Cook, David S Malkus and Michael E Plesha "Concepts and Applications of Finite Element Analysis", Wiley India Pvt. Limited, New Delhi.
- 2. George R Buchanan "Theory and Problems of Finite Element Analysis", Tata McGraw-Hill Companies, Inc. New York.
- 3. Finite element analysis and procedures in engineering by H.V.Lakshminaryana, 3rd edition, universities press, Hyderabad.
- 4. Finite Element Analysis for Engineering and Technology, Tirupathi R Chandraputla, Universities Press Pvt Ltd, Hyderabad. 2003.

Course Title	Design of Stee	ruct	ures	B.Tech CE VII Sem (R20)						
Course Code	Category	Ho	Hours/Week		Credits	Maximum Marks				
2001704	Professional Elective (PEC IV)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		3	0	0	3	40	60	100		
Mid Exam Duration: 1.5 Hrs						End Exam Duration: 3 Hrs				

Course Objectives:

- The student acquires knowledge about elastic & plastic methods to analyze the structural elements.
- To understand about different types of tension & compression members and to analyze easily by limit state design.
- To make the student able to analyze various beams like laterally supported & laterally unsupported beams.
- To make the students to understand the beam to beam & beam to columnconnections.
- To understand the design of slab base and gusseted based and subjected to moments.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1 Aware of standard loads and load combinations considered for design of steel structures; basic knowledge on plastic analysis.

CO 2 Analyse and design welded connections subjected to axial loads and moments.

CO 3 Deign tension and compression members with different cross-sections.

CO 4 Design simple and compound beams and beam connections.

CO 5 Design beam column connections and column base.

<u>UNIT – I</u>

Introduction: Loads & Load combinations: Appraisal of loading standards such as I.S, I.R.C Effect of wind and earthquake on structure.

Plastic Analysis : Introduction – Idealized Stress – Strain Diagram – Shape Factors for Various Sections – Moment Curvature Relationship – Ultimate Moment – Plastic Hinge – Lower and

Upper Bound Theorems – Ultimate Strength Fixed and Continuous Beams – Frames.

<u>UNIT – II</u>

Welded Connections: Introduction – Advantages and Disadvantages of Welding – Strength of Welds – Butt and Fillet Welds – Permissible Stresses – IS Code Requirements – Design of Welds Subjected to Moment Acting in the Plane and at Right Angles to the Plane of the Joints – Beam to Beam and Beam to Column Connections.

<u>UNIT – III</u>

Design of Tension Members: Types of Sections – Net Effective Section for Angles and Ties in Tensions - Lug Angles – Tension Splices.

Design of Compression Members: Plain and Built-Up Compression Members – Assumptions Regarding End Conditions – Design of Built-Up Columns with Battens and Lacings – Splicing of Column.

$\underline{UNIT} - IV$

Design of Beams: Allowable Stresses – Design Requirements as per IS Code – Design of Simple and Compound Beams- Curtailment of Flange Plates – Beam to Beam Connections – Check for Deflections –Shear – Buckling – Check for Bearing – Laterally Unsupported Beams.

<u>UNIT – V</u>

Design of Beam to Column Connections: Introduction – Design of Beam to Column Connections – Framed, Stiffened, Un-Stiffened and Seated Bracket Connections. Design of Column Bases: Design of Slab Base and Gusseted Bases – Column Bases subjected to Moment.

Text books:

- S K Duggal "Limit State Design of Steel Structures", Tata McGraw-Hill Companies, Inc. NewYork.
- S S Bhavikatti "Design of Steel Structures", I K International Publishing House Pvt. Limited, New Delhi.
- 3. Design of steel structures by M Raghupathi Tata MC Graw -Hill
- 4. Steel structures by Subramanian N, Oxford Higher Education, New Delhi

Reference Books / Is Codes / Tables:

- IS 800 2007 "Indian Standard Code of Practice for General Construction in Steel", Bureau of Indian Standards, New Delhi.
- IS 875 Part 3 "Indian Standard Code of Practice for Design Loads (Other than Earthquake) for Building and Structures – Wind Loads", Bureau of Indian Standards, NewDelhi.
- 3. K L V Ramu and Subhash Chander "Steel Tables SI Units", Jain Brothers, New Delhi.

4. Limit state Design of steel structures by S.K. Duggal Tata MCgraw Hill, New Delhi

Course Title	Water Supply	Water Supply Engineering						B.Tech CE VII Sem (R20)			
Course Code	Category	Ho	urs/'	Week	Credits	Maximum Marks					
2001705	Professional Elective (PEC IV)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		3	0	0	3	40	60	100			
Mid Exam Duration: 1.5 Hrs						End Exam Duration: 3 Hrs					

Course Objectives:

- To import knowledge in water quantity and quality parameters and future demandand forecasts on water
- To study the sources, quality, and standards of water
- To understand various water treatments methods
- To understand the water distribution system from source to destination

Course Outcomes: On successful completion of this course, the students will be able to

CO 1 Estimate per capita consumption of water for future demands using different methods.

CO 2 Know various sources of water and quality standards of drinking water.

CO 3 Understand the stages involved in drinking water treatment process.

CO 4 Follow advanced water treatment methods adopted by industry and sustainable water management methods.

CO 5 Plan efficient water distribution network to supply as per demand.

UNIT - I

Introduction

Role of Environmental Engineer - Development of public water supply - Need for protected water supply - Objectives of water supply systems - Per Capita Consumption -Water quantity estimation - population forecast - Arithmetic, Incremental, Geometric methods.

UNIT - II

Sources of Water

Sources of water - Surface and ground water sources – Infiltration galleries - Infiltration wells.

Quality of Water

Quality of water - Physical, chemical, and biological aspects - Drinking water quality standards - Water borne diseases.

<u>UNIT - III</u>

Treatment of Water

Flow chart of water treatment plant – Treatment - Sedimentation - Coagulation - Filtration - Disinfection methods - Softening of Water – Defluoridation.

<u>UNIT - IV</u>

Advanced Water Treatments

Objectives and types of Aeration - Iron and manganese removal - Demineralization - Desalination - Membrane Systems.

Water Management

Sustainable Development - Rainwater harvesting methods - Water Pollution - Causes and effects

<u>UNIT - V</u>

Water Distributions

Distribution systems - Requirements, Layout of Water distribution systems - Design procedures - Hardy Cross methods - Laying of pipelines - waste detection and prevention - Different types of valves Joints, and fire hydrants.

Text Books:

- 1. S K Garg, "Environmental Engineering", Vol.1 Khanna Publishers, New Delhi.
- 2. B C Punmia, Ashok Kumar Jain & Arun Kumar Jain "Water Supply Engineering", LakshmiPublications, New Delhi.
- 3. Water supply and sanitary Engineering by G.S. Birdi, Dhanpat Rai & Sons Publishers
- 4. Water Supply Engineering, Vol. 1, waste water Engineering, Vol. II, B.C.Punmia, AshokJain & Arun Jain, Laxmi Publications Pvt.Ltd, New Delhi

- 1. H S Peavy, D R Rowe and G Tehobanoglous "Environmental Engineering" Tata McGraw-Hill Companies, Inc. New York.
- 2. S K Hussain "Water Supply and Sanitary Engineering", Oxford & IBH, New Delhi.
- 3. K.N. Duggal, Elements of Environmental Engineering, 1st Edition, S.Chand Publishers, New Delhi, 2010.
- 4. G.S. Birdie and J. S. Birdie, Water Supply and Sanitary Engineering, 8th Edition, DhanpatRai and Sons Publishers, New Delhi, 2010.

Cour	se Code	Category	Hou	ırs/V	Veek	Credits	Maxim	um Marl	ks
20	01706	Professional Elective (PEC-IV)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0	0	3	40	60	100
		Mid Exam Duration: 1.5 H	Irs				End Exam l	Duration	: 3 Hrs
Course Objectives: To expose students to the design and analysis methodology for designing combined									
footings	, retaining v	walls, overhead tanks, bridge	deck	slab	s as p	er standa	rd IS and IRC	codal pro	visions.
Course	Outcomes:	On successful completion of	this	cour	se, th	e student	s will be able to	0	
CO 1	Design con	nbined footings as per limit s	tate c	lesig	n met	hod of IS	456-2000 cod	al provisi	ons
CO 2	Design & d	letailing of cantilever and cou	inter	fort r	etaini	ng walls	as per IS Coda	l Provisio	ons
CO 3	Design RC	C circular ground level and o	ver-l	nead	tanks	as per IS	code		
CO 4	Design RCC flat slabs as per IS code								
CO 5	Design RCC bridge deck slab as per IRC codal provisions								

<u>UNIT – I</u>

Combined Footings

Limit state design & detailing of combined- rectangular and trapezoidal footings as per IS: 456-2000 Codal Provisions.

<u>UNIT – II</u>

Design & detailing of cantilever and counter-fort Retaining wall as per IS Codal Provisions.

<u>UNIT – III</u>

Elastic Design & Detailing for RCC circular and Rectangular ground level and over-head tanks- Design of staging, Design of Intze tanks as per IS Codal Provisions.

<u>UNIT – IV</u>

Design of Flat slab (Interior panel only)

<u>UNIT – V</u>

Elastic design and detailing of RC bridge deck slab using effective width method and Pigeaud's method as per IRC Codal Provisions.

Text Books:

- S. Ramanatham, Design of Reinforced Concrete Structures, Dhanpat Rai &Sons, 2002.
- D.S. Prakash Rao; Design Principles and Detailing of Concrete Structures, Tata McGraw-Hill Publishing Co. Ltd., 1995.
- Johnson Victor, D., "Essentials of Bridge Engineering", Oxford & IBH Publishing Co., New Delhi, Fourth Edition, 1991
- 4. Krishna Raju. N., "Advanced Reinforced Concrete Design", CBS Publishers and distributors, 2007
- 5. Unnikrishna Pillai and Devdas Menon, Reinforced Concrete Design, Tata McGraw HillPublishers Company Ltd., New Delhi, 2006.

- 1. Park & Paulay, "Reinforced Concrete", Robert Publisher, 1975.
- Ashok.K. Jain, Nem Chand & Bors. "Reinforced Concrete", Tata McGraw-Hill PublishingCompany Limited, New. Delhi, 2003.
- Sinha. N. C. and Roy S. K., "Fundamentals of Reinforced Concrete", S. Chand and company Limited, New Delhi, 2003.
- 4. Bungey, Millard, Grantham, "Testing of Concrete in Structures", Taylor and Francis, United Kingdom.
- 5. IS 456:2000 Plain and Reinforced Concrete Code of Practice.

Course Title	Design and I	Drawi Struct	ing o ures	f Irrig	B.Tech CE VII Sem (R20)			
Course Code	Category	Hours/Week			Credits	Maximum Marks		
2001707	Professional Elective (REC V)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
	(PEC V)	3	0	0	3	40	60	100
Mid Exam Duration: 1.5 Hrs				End Exam Duration: 3 Hrs				

Course Objectives:

- To study the preliminary and secondary investigations required for hydraulic structures.
- To study the different methods for estimating of peak flow.
- To study in detail design procedures and their site-specific criteria.
- To study the different safety measures required for during operations of irrigation structures.

Course	e Outcomes: On successful completion of this course, the students will be able to
CO 1	Gain knowledge and use or apply theory / design principles of surplus weir works.
CO 2	Understand the importance and easily recognize the structure in broadest context of canal drop
	works.
CO 3	Apply engineering fundamentals to study stability and design aspects of tower head.
CO 4	Identify components of canal regulator and design aspects of Vent way.
CO 5	Design canal drop structures based for different filed conditions.

<u>UNIT-I</u>

Design of surplus Weir

Introduction – Estimation of Flood Discharge – Selection of type of Work – Length of Surplus Weir – Crest Width Base Width – Abutments – Wings Returns – Aprons.

<u>UNIT – II</u>

Canal Drop (Notch Type)

Trapezoidal Notch Length of Drop Wall Between Abutments – Profile of Drop Wall – Notch Pier – Protective Works.

<u>UNIT – III</u>

Tank Sluice with Tower Head

Vent Way Design – Sluice Barrel Tower Head – R.C Slab – Earth Pressure – Stability Analysis – Tower Head Design – Cistern.

UNIT – IV

Canal Regulator

Vent Way Design – Drowning Ratio Method – Roadway – Piers Shutters, Abutments – Wing Walls – Return Walls –Solid Apron for Regulator.

<u>UNIT – V</u>

Glacis Type of Canal Drop

Design of throat – Fluming Ratio – Crest Level – Length of weir crest – U/S & D/S side Glacis – Baffle platform – Canal approach – Protective works.

Text Books:

- 1. C Satyanarayana Murty "Water Resources Engineering Principles and Practice", New Age International (P) Limited, Publishers, New Delhi.
- 2. Irrigation engineering and Hydraulic structures by S.K.Garg, Standard Book House.

- 1. Santosh Kumar Garg "Irrigation Engineering and Hydraulic Structures", Khanna Publishers, New Delhi.
- 2. N Balasubramanya "Hydraulic Structures and Irrigation Design Drawing", Sapna Book House and Publishers, Bangalore

Course Title	Construction Practice a	B.Tech CE VII Sem (R20)							
Course Code	Category	Hou	rs/W	'eek	Credits	Maximum Marks			
2001708	Professional Elective (PEC-V)	L	T	P	С	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
	Mid Exam Duration: 1.5 H	[rs				End Exam D	ouration: 3	3 Hrs	

Course Objectives:

- To equip students with the understanding of the importance of construction management, resource management and various stages of construction project
- To give students, the understanding of various concepts involved in construction planning and the ability to schedule the construction activities using various scheduling techniques
- To understand various types of equipment in construction and the effect of mechanization on productivity
- Understand importance and procedure of inspection, Quality control and ethical audit.
- To know the importance of safety measures in construction activity and principles of organization for effective communication

Cours	ourse Outcomes: On successful completion of this course, the students will be able to										
CO 1	Understand the importance of construction management, resource management along with various stages of construction project										
CO 2	Schedule construction activities using various scheduling techniques										
CO 3	Understand various types of equipment in construction and the effect of mechanization on productivity.										
CO 4	Inspect the construction activities and perform quality control of various construction activities.										
CO 5	Know the importance of safety measures in construction activity and principles of organization for effective communication										

<u>UNIT – I</u>

Introduction

Significance of Construction Management – Objectives and Functions of Construction Management – Types of Construction – Resources for Construction Industry – Stages of Construction – Construction Team and Engineering Drawings.

<u>UNIT – II</u>

Construction Planning

Work-breakdown structure, methodology of WBS, planning techniques—terminologies used, event and activity, dummy activity, network, precedence, network logic, duration of an activity, forward and backward pass, float or slack time. Path and critical path, bar charts, reparation of network diagram, Programme Evaluation and Review Technique (PERT),

Critical Path Method (CPM), the Line-Of-Balance (LOB), network techniques advantages, disadvantages.

<u>UNIT – III</u>

Construction Equipment and Management

Equipment Requirements in Construction Industry, Heavy Earth Moving Equipment – Bulldozers, Scrapers, Loaders Shovels and Cranes Compaction Equipment, Grading Equipment, Aggregate Production Equipment, Asphalt Mixing Plant and Asphalt Laying Plant, Hauling Equipment, Concrete Mixing Equipment, Material Handling Devices, Pneumatic Equipment, Bridge Construction Equipment, Drilling and Blasting Equipment, Pumping and Dewatering Equipment.

$\underline{UNIT} - IV$

Inspection and Quality Control, Ethical Audit

Need for Inspection and Quality Control, Principles of Inspection – Enforcement of Specifications – Stages of Inspection an Quality Control. Introduction – Aspects of Project Realization – Ethical Audit Procedures – The Decision Makers – Variety of Interest – Formulation of Briefs – The Audit Statement and Reviews.

<u>UNIT – V</u>

Safety and Risk, Organization of Construction

Introduction on Safety and Risk – Concept and Importance of Safety – Types of Risks – Safety and Engineers – Safety Measures in Construction Work – Design for Safety – Risk Benefit Analysis – Accidents. Principles of Organization – Communication – Leadership and Human Relations – Types of Organizations Organization for Construction – Temporary Services and Job Layout.

Text Books:

- 1. P S Gahlot and B M Dhir "Engineering Construction Planning and Management", New Age International (P) Limited, Publishers, New Delhi.
- 2. S C Sharma "Construction Equipment and Its Management", Khanna Publishers, New Delhi.
- 3. B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, Building Construction, 10th Edition, Laxmi Publications (P) Ltd., New Delhi, 2010

4. KN Jha, Construction Project Management,1stEdition, Pearson Publications, New Delhi, 2011

- 1. M Govindarajan, S Natarajan and V S Senthilkumar "Engineering Ethics", Prentice-Hall of India (P) Limited, New Delhi.
- 2. Dr. S Seetharaman "Construction Engineering and Management", Umesh Publications, New Delhi.
- Horpal Singh "Construction Management and Accounts", Tata McGraw-Hill Companies, Inc. New York.
- 4. P.K. Joy, Total Project Management: The Indian Context, 1st Edition, Mac Millan Publishers India Limited, 199

Cou	ırse Title	Urban Transport	ation]	Plan	ning	5	B.Tech CE VII Sem (R20)				
Cou	irse Code	Category	Hour	s/W	'eek	Credits	lits Maximum Marks				
20	001709	Professional Elective (PEC V)	L	Т	Р	С	ContinuousEndInternalExamAssessment		Total		
			3	0	0	3	40	60	100		
		Mid Exam Duration: 1.5 I	Hrs				End Exam D	uration:	3 Hrs		
Course	Objectives:										
•	To study the	need of urban transportation	plann	ing	syste	m.					
•	 To understand different types of transportation surveys. To study the process of trip generation and distribution. To understand model split and factors affecting it. To study the transportation plan preparation for different transit systems 										
Course	Outcomes:	On successful completion of	f this c	ours	e, the	e students	will be able to				
CO 1	Justify the ne	ed for urban transportation	planni	ng.							
CO 2	Undertake di	fferent traffic surveys requir	ed for	desi	gn o	f transpor	t system.				
CO 3	Plan the proc	ess of trip generation and di	stribut	ion.							
CO 4	Understand a	nd evaluate current scenario	os of la	ind u	ise.						
CO 5	Prepare the t	ransportation plans for urbar	n mass	rapi	d tra	nsit syste	ms.				

<u>UNIT – I</u>

Introduction to Urban Transportation System Planning

Role of transportation in urban development – Transportation problems in urban areas -Purpose of transportation planning - Transportation planning process and factors affecting it -Travel demand and factors affecting it - Urban transport forecasting

<u>UNIT – II</u>

Transportation Surveys

Study area and zoning - Survey Types: Home interview surveys - Commercial vehicle surveys - Taxi surveys - Road side interview surveys - Post card questionnaire surveys - Registration number surveys - Tag surveys - Public transport surveys - Telephone surveys - Inventory of existing transport facilities.

<u>UNIT – III</u>

Trip Generation and Distribution

Trip generation: Trip purpose, Problems of trip generation -Factors governing trip generation and attraction rates - Trip distribution, Methods of trip distribution: Uniform factor - Average factor - Detroit - Fratar - Furness and Time factor method - Problems based on trip distribution-Modal Split-Modal split in the transport planning process-Problems-Factors affecting modal split.

$\underline{UNIT} - \underline{IV}$

Land-Use-Transport Models

Introduction-Selection of Land -Use-Transport Models-Lowry Derivative Models-Garin-Lowry Model-Applications in India

<u>UNIT – V</u>

Transportation Plan Preparation

Definitions: corridor, corridor traffic forecasting, corridor traffic study, count, segment, point, segment capacity, screen line - Corridor identification - Mass transit system - Urban mass rapid transit system - Rail based transit – Metro, Light rail transit system (LRT), Monorail, Sky rail - Road based transit – Bus rapid transit system (BRTS), Electric trolley bus, commuter Bus / City Bus.

Text Books:

1. Kadiyali. L. R. "Traffic Engineering and Transportation Planning", Khanna Publishers, New Delhi.

- 2. Hutchinson, B. G "Introduction to Urban System Planning", McGraw Hill.
- 3. Papa Costas C.S.; Fundamentals of Transportation Engineering, Prentice Hall, India

- 1. John W. Dickey, Metropolitan Transportation Planning, Tata McGraw Hill Pub. Co
- 2. Vukan R. Vuchic, Urban Public Transportation System & Technology, Prentice Hall, Inc.
- 3. Jotin Khisty, C. and Kent Lall, B., Transportation Engineering An Introduction, Prentice-Hall
- 4. Salter, R J., Highway Traffic Analysis and Design, ELBS.

Course Title	Energy	Conv	ersio	n Sys	stems	B. Tech. EEE Open Elective - II			
Course Code	Category	Hou	ırs/W	/eek	Credits	Maximum Marks			
200E203	Open Elective (OEC)	L T P C		С	Continuous Internal Assessment	End Exam	Total		
) 3 0 0		3	40	60	100		
Mi	d Exam Dura	ation:	End Exam Duration: 3Hrs						

Course Objectives: The objective of the course is to learn about energy conversion techniques, sources of electrical energy production and impact of energy conversion systems on environment.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Understand various energy conversion systems, fuel cells & batteries
CO 2	Analyze solar and wind energy conversion process
CO 3	Illustrate Ocean Energy Conversion systems
CO 4	Explain the environmental effects of Energy Conversion Systems.

<u>UNIT I</u>

Photo Voltaic Power Generation: Spectral distribution of energy in solar radiation, solar cell configurations, voltage developed by solar cell, photo current and load current, practical solar cell performance, test specifications for PV systems.

<u>UNIT II</u>

Wind Energy Conversion: Power from wind, properties of air and wind, types of wind Turbines, operating characteristics.

<u>UNIT III</u>

Tidal Power Station: Tides and Tidal power stations - modes of operation of Tidal project - Turbines and Generators for Tidal Power generation.

Ocean Thermal Energy Conversion: Types of ocean thermal energy conversion systems, Application of OTEC systems examples.

<u>UNIT IV</u>

Miscellaneous Energy Conversion Systems: Biomass conversion, Geothermal energy, Thermo electric energy conversion: Seebeck effect, Peltier and Thomson effects and their coefficients – Thermo-Electric Generator – Peltier Cooling

<u>UNIT V</u>

Fuel Cells & Batteries: Introduction - principles of EMF generation - description of fuel cells - Batteries, Description of batteries, Battery applications for large power.

Environmental Effects: Environmental Effects of Energy Conversion Systems, Pollution from coal and preventive measures - steam stations and pollution - pollution free energy systems.

Text Books

- "Energy conversion systems" by Rakosh das Begamudre, New age international Private Ltd., publishers, 1st Edition, 2000.
- 2. "Renewable Energy Resources" by John Twidell and Tony Weir, CRC Press (Taylor & Francis).

Course Title		Sma	rt Gi	rid		B. Tech. EEE Open Elective - II					
Course Code	Category	Hours/Week			Credits	Maximum	Maximum Marks				
200E204	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
	Course (OEC)	3	0	0	3	40	60	100			
Mi	d Exam Du	ratio	n: 1H	Ir30N	Λ	End Exam Dur	ation: 3	Hrs			
Course Of of smart gr	Course Objectives: The student is able to learn fundamentals, Architecture and analysis of smart grid with communication, networking and measuring technologies involved in it.										
On success	ful completi	on of	this	cours	e, the stud	ents will be able to					

CO 1	Understand the features, fundamental components and architecture of smart grid
CO 2	Explain information, communication and networking technologies involved with the smart grid
CO 3	Explain operation and importance of PMU, WAMPS and smart storage systems in smart grid
CO 4	Analyze Microgrid with various concepts and challenges in future

<u>UNIT-1</u>

Introduction to Smart Grid: Working definitions of Smart Grid and Associated Concepts – Need of Smart Grid – Smart Grid Functions – Opportunities & Barriers of Smart Grid - Conventional Power Grid and Smart Grid -Concept of Resilient & Self-Healing Grid.

<u>UNIT-II</u>

Smart Grid Architecture: Components and Architecture of Smart Grid – Review of Proposed Architectures for Smart Grid – The Fundamental Component of Smart Grid Designs – Transmission Automation – Distribution Automation – Renewable Integration. **UNIT-III**

Information and Communication Technology: Smart sensors, Wired and wireless communication Technology, Network Structures (**HAN, LAN, NAN, WAN**), Introduction to Smart Meters – Advanced Metering Infrastructure (AMI).

UNIT-IV

Smart Grid Technologies: Geographic Information System (GIS) - Intelligent Electronic Devices (IED) - Smart storage like Battery- SMES - Pumped Hydro - Compressed Air Energy Storage - Wide Area Measurement System (WAMS) – SCADA - Phase Measurement Unit (PMU).

<u>UNIT – V</u>

Micro grids and Distributed Energy Resources: Concept of micro grid, need & application of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid, Plastic & Organic solar cells, thin film solar cells, Variable speed wind

generators, and fuel cells.

Text Books

- 1. Janaka Ekanayake, Kithsir iLiyanage, Jian zhong. Wu, Akihiko Yokoyama, Nick Jenkins, "Smart Grid: Technology and Applications"- Wiley, 2012.
- 2. Stuart Borlase, Smart Grids, Infrastructure, Technology and Solutions, CRC Press, 1e,2013.
- 3. James Momoh, "Smart Grid: Fundamentals of Design and Analysis"- Wiley, IEEE Press, 2012.

- 1. A.G. Phadke and J.S. Thorp, "Synchronized Phasor Measurements and their Applications", Springer Edition, 2e, 2017.
- 2. James Northcote, Green, Robert G. Wilson "Control and Automation of Electric Power Distribution Systems (Power Engineering)", CRC Press.
- 3. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability", Artech House Publishers July 2011.
- 4. 4. Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2009.

Course Title	Automot	ive Elec	tronics, S	ensors &	Drives	B.Tech ME VI Sem		
Course Code	Category]	Hours/We	eek	Credits	Maximum Marks		
20OE306	OEC-II	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0		3	40	60	100
Mid	Exam Durati	on: 90 I	Minutes		E	nd Exam Durat	tion: 3Hrs	
Course Object	ives:							
. The objective	s of this course	e are to						
 Explain 	• Explain the use of electronics in the automobile.							
 Explain 	the importanc	e of vari	ous types	of sensors	and actuate	ors in automotiv	e electroni	cs.
Demons	strate the vario	us contro	ol element	ts in Engin	e Managen	nent system.		
Familia	rize with Vehic	cle mana	igement sy	ystems				
• Identify	various electro	onic and	the instru	imentation	systems us	ed in automobil	e	
Course Outcon	nes: On succes	ssful cor	npletion o	of this cour	se, the stud	ents will be able	e to	
CO1 Obtain protoco	an overview o ols and safety s	f automo ystems o	otive comp employed	ponents, li in today's	ke sensors, automotive	actuators, comn e industry.	nunication	
CO 2 Interfac	e automotive	sensors a	and actuat	ors with m	nicrocontrol	lers.		
CO 3 Know,	the various dis	play dev	vices that	are used ir	automobil	es		
CO 4 Identify	y the elements	in the er	ngine man	agement a	nd vehicle	management sys	stem.	
CO 5 Summa protoco	arize an overvious and safety s	ew of au ystems o	tomotive employed	componen in today's	ts, like sens automotive	sors, actuators, c e industry.	ommunica	ation

<u>UNIT - I</u>

Introduction to microcomputer

Introduction to microcomputer: Microcomputer: Buses, memory, timing, CPU registers; Microprocessor architecture: Initialization, operation codes, program counter, branch and jump instructions, subroutine. Analog to digital converters and Digital to analog converters, sampling, polling and interrupts, digital filters, lookup table.

<u>UNIT - II</u>

Sensors and actuators

Sensors and actuators: Speed sensors, Pressure sensors: Manifold Absolute Pressure sensor, knock sensor, Temperature sensors: Coolant and Exhaust gas temperature, Exhaust Oxygen level sensor, Position sensors: Throttle position sensor, accelerator pedal position sensor and crankshaft position sensor, Air mass flow sensor. Solenoids, stepper motors and relays.

<u>UNIT - III</u>

Electronic engine management system

Electronic engine management system: Electronic engine control: Input, output and control strategies, electronic fuel control system, fuel control modes: open loop and closed loop control at various modes, EGR control, Electronic ignition systems – Spark advance correction schemes, fuel injection timing control.

<u>UNIT - IV</u>

Electronic vehicle management system

Electronic vehicle management system: Cruise control system, Antilock braking system, electronic suspension system, electronic steering control, traction control system, Transmission control, Safety: Airbags, collision avoiding system, low tire pressure warning system.

<u>UNIT - V</u>

Automotive instrumentation system

Automotive instrumentation system: Input and output signal conversion, multiplexing, fuel quantity measurement, coolant temperature and oil pressure measurement, display devices- LED, LCD, VFD and CRT, Onboard diagnostics(OBD), OBD-II, off board diagnostics.

Text Books:

1. Understanding Automotive Electronics, William B Ribbens, Newne Butterworth-Heinermann, 6th edition 2003.

2. Crouse W H, Automobile Elctrical Equipment, McGraw Hill Book Co.Inc, Newyork 2005.

Reference Books:

1. Bechhold "Understanding Automotive Electronics", SAE, 1998.

2. Robert Bosch "Automotive Hand Book", SAE (5th Edition), 2000.

3. Tom Denton,"Automobile Electrical and Electronic Systems" 3rd edition- Edward Arnold, London - 2004.

4. Eric Chowanietz - 'Automotive Electronics' - SAE International USA – 1995.

Course T	tle	Robotics a	and App	olication	s in Manu	facturing	B.Tech	ME VI Ser	n	
Course C	de	Category	I	Iours/W	/eek	Credits	Maximum Marks			
200E307		OEC-II	L	Т	T P		Continuous Internal Assessment	End Exam	d m Total	
			3	0		3	40	60	100	
]	Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs									
Course Ob	jecti	ves:								
. The object	tives	of this course	e are to							
• Lea	n the	e fundamental	l concep	ts of ind	ustrial robo	otic technolo	gy.			
• App	ly the	e basic mathe	matics t	o calcula	ate kinemat	tic and dynai	nic forces in rot	oot manipul	lator.	
• Une	ersta	nd the robot of	controlli	ng and p	orogrammir	ng methods.				
• Des	cribe	concept of ro	bot visi	on syster	m.	-				
Course Ou	tcom	es: On succe	ssful co	mpletion	of this cou	rse, the stud	ents will be able	e to		
CO1 Illu	strate	e the industria	al applic	ations of	f robot visio	on system.				
CO 2 Us	con	cepts of robot	t control	ling syst	ems.	<i>.</i>				
CO3 Ev	luate	e D-H notation	ns for si	mple roł	oot manipu	lator.				
CO 4 De	ïne a	robot and ho	mogene	ous tran	sformation	s.				
CO 5 Ap	Apply the concepts of robot.									
UNIT - I										

Fundamentals of Robots

Fundamentals of Robots: Introduction, definition, classification and history of robotics, robot characteristics and precision of motion, advantages, disadvantages and applications of robots. Introduction to matrix representation of a point in a space a vector in space, a frame in space, Homogeneous transformation matrices, representation of a pure translation, pure rotation about an axis.

<u>UNIT - II</u>

Kinematics of robot, Differential motions and Velocities

Kinematics of robot: Forward and inverse kinematics of robots- forward and inverse kinematic equations for position and orientation, Denavit-Hartenberg(D-H) representation of forward kinematic equations of robots, The inverse kinematic of robots, Degeneracy and Dexterity, simple problems with D-H representation.

Differential motions and Velocities: Introduction, differential relationship, Jacobian, differential motions of a frame-translations, rotation, rotating about a general axis, differential transformations of a frame. Differential changes between frames, differential motions of a robot and its hand frame, calculation of Jacobian, relation between Jacobian and the differential operator, Inverse Jacobian.

<u>UNIT - III</u>

Control of Manipulators

Control of Manipulators: Open- and Close-Loop Control, the manipulator control problem, linear control schemes, characteristics of second-order linear systems, linear second-order SISO model of a manipulator joint, joint actuators, partitioned PD control scheme, PID Control Scheme, computer Torque control, force control of robotic manipulators, description of force-control tasks, force control strategies, hybrid position/force control, impedance force/torque control.

UNIT - IV

Robot Vision

Robot Vision: Introduction, architecture of robotic vision system, image processing, image acquisition camera, image enhancement, image segmentation, imaging transformation, Camera transformation and calibrations, industrial applications of robot vision.

<u>UNIT - V</u>

Robot Application in Manufacturing

Robot Application In Manufacturing: Material Transfer - Material handling, loading and unloading - Process - spot and continuous arc welding & spray painting - Assembly and Inspection.

Text books:

- Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, NicholasG.Odrey, Industrial Robotics — McGraw Hill, 1986.
- 2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.
- 3. 3.John.J. Craig Addison, Introduction to Robotics: Mechanics and Control, Wesley,
 1

- 1. Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley-Interscience, 1986.

- 3. Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.
- 4. Mohsen shahinpoor, A robot Engineering text book, Harper & Row Publishers, 1987.

Cours	e Title	Senso	ors in In	telligen	t Manu	facturing	B.Tech	B.Tech ME VI Sem		
Cours	e Code	Category	He	ours/We	ek	Credits	Maxim	um Marl	κs	
20OE308		OEC-II	L	Т	Р	С	ContinuousEndInternalExam		Total	
			3	0		3	40	60	100	
	Mid Ex	am Duration	n: 90 Mi	inutes		End l	Exam Duration	n: 3Hrs		
Course Objectives:										
. The o	bjectives	of this course	e are to							
•	Familiari	ze the sensors	s used ir	intellig	ent man	ufacturing.				
•	Illustrate	sensors used	in preci	sion mai	nufactur	ing and CNC ma	chine tools.			
•	Explain s	ensors for mo	onitoring	g of man	ufacturi	ng systems.				
•	Outline a	dvanced sens	ors used	l in intel	ligent m	anufacturing.				
Course	Outcom	es: On succes	ssful coi	npletion	of this	course, the studer	nts will be able	to		
CO 1	Classify	various sense	ors used	in intell	igent m	anufacturing.				
CO 2	Summar	ize sensors us	sed in co	mputer	integrat	ed manufacturing	g and machine s	ensors.		
CO 3	Apply se	ensors used in	n precisi	on manu	facturin	g.				
CO 4	Identify reasons behind machinery faults.									
CO 5	Develop	the Importan	t role in	making	the pro	ducts intelligent a	and highly auto	matic.		

<u>UNIT - I</u>

Introduction

Introduction –Principles, classifications and characteristics of sensors – Electrical, magnetic, optical, acoustic, pneumatic, magnetic, electro-optical and vision sensors, role of sensors in intelligent manufacturing.

<u>UNIT - II</u>

Sensors and control in CIM and FMS:

Sensors and control in CIM and FMS: Design of CIM, decision support system for CIM, analysis of CIM, development of CIM strategy with sensors and control. FMS-Robot control with machine vision sensors-Architecture of robotic vision system, image processing, image acquisition, enhancement, segmentation, transformation, industrial application of robot vision, multi Sensor controlled robots, measurement of robot density, robot programming.

<u>UNIT - III</u>

Sensors in Precision Manufacturing:

Sensors in Precision Manufacturing: Testing of manufacturing components, principles and applications of digital Encoders, opto-electronic colour sensors, control applications in robotics. Sensors for CNC machine tools– linear, position and velocity sensors. Automatic identification techniques for shop floor control.

<u>UNIT - IV</u>

Sensors for Monitoring of Manufacturing Systems

Sensors for Monitoring of Manufacturing Systems: Principles – sensors for monitoring temperature, force, vibration and noise. Sensors to detect machinery faults.Selection of sensors and monitoring techniques.

<u>UNIT - V</u>

Smart / Intelligent sensors

Smart / Intelligent sensors: Integrated sensors, micro sensors, nano sensors. Manufacturing of semi conductor sensors.Fibre optic sensors – Fibre optic parameters, configurations, photoelectric sensor for long distance, sensor alignment techniques.

Text Books:

1. SabrieSoloman, Sensors and Control systems in Manufacturing, McGraw-Hill, 2/e, 2010.

2. H.K Tonshoff and I.Inasaki, Sensor Applications Vol 1: Sensors in Manufacturing, Wiley-VCH Publications, 2001.

Reference Books:

1. SabrieSoloman, Sensors Handbook, McGraw-Hill, 2/e, 2010.

2. MikellP.Groover, Mitchell Weiss, Roger N.Nagel, Nicholas G.Odrey, Industrial Robotics, Tata McGraw-Hill, 2008.

Cour	se Title	Non-C	Non-Conventional Energy Sources					B.Tech ME VI Sem			
Cour	se Code	Category	Ho	ours/We	ek	Credits	Maximu	m Marks	5		
200)E309	OEC-II	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
			3	0		3	40	60	100		
	Mid Exa	am Duration	h: 90 M i	inutes		E	nd Exam Duratio	n: 3Hrs			
Course	e Objectiv	es:									
. The c	bjectives objectives	of this course	e are to								
•	• To get exposure on solar radiation and its environmental impact to power production										
•	To know a	about the var	ious col	lectors u	used for	storing solar	energy and their a	pplication	IS		
•	To learn a	bout the win	d energy	y and bio	omass a	nd its econon	nic aspects				
•	To know a	about geothe	rmal, O	cean and	Wave of	energy source	es				
٠	To know a	about direct e	energy c	onversio	on system	ms.					
Course	e Outcome	es: On succes	ssful cor	npletion	of this	course, the st	tudents will be able	e to			
CO 1	Determin	e the physics	s of sola	r radiati	on and i	ts measurem	ent techniques.				
CO 2	Classify t	he solar ener	gy colle	ectors, m	nethodol	ogies of stor	ing solar energy an	d			
CO 3	Apply kn	owledge to d	levelop	Wind an	d Bio-e	nergy system	18.				
CO 4	Categoriz	the Geothe	ermal, T	idal, OT	EC and	hydelenergy	, its mechanism of	productio	on and		
	its applica	ations.						-			
CO 5	Illustrate	the concepts	of Dire	ct Energ	gy Conv	ersion system	ns and their applica	tions.			
	<u>UNIT - I</u>										

Principles of Solar Radiation

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surfaces, instruments for measuring solar radiation and Sunshine Recorder, solar radiation data.

<u>UNIT - II</u>

Solar Energy Collection, Storage& Applications

Solar Energy Collection: Flat plate and concentrating collectors, classification of concentrating collectors, Advantages and disadvantages of concentrating collectors over Flat plate collectors

Solar Energy Storage: Different methods of solar Thermal Energy Storage Sensible, latent heat and stratified storage, solar ponds.

Applications of Solar Energy: solar water heating, solar distillation and drying, photovoltaic energy conversion.

<u>UNIT – III</u>

Wind Energy & Bio-Mass Energy

Sources and potentials, horizontal and vertical axis windmills, performance
characteristics, Betz criteria

Bio-Mass: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C. Engineoperation and economic aspects.

$\underline{UNIT} - IV$

Geothermal Energy & Energy from Oceans

Geothermal sources, types of wells, methods of harnessing the energy, potential in India. Ocean Energy: OTEC, Basic Principles utilization, setting of OTEC plants, thermodynamic cycles.

Tidal and Wave energy: Potential and conversion techniques, mini-hydel power plants

UNIT – V

Direct Energy Conversion Systems:

Need for DEC, principles of DEC, Thermo-electricpower generation – Basic Principle, materials, applications, MHD Power Generation-Principle, MHD systems, Fuel cells-principle and operation, types of fuel cells and their applications

Textbooks:

- 1. Mehmet Kanoglu, YunusA. Cengel, John M. Cimbala, Fundamental and Applications of Renewable Energy, First Edition, McGraw Hill, 2020
- John Twidell and Tony Weir, Renewable Energy Resources, Third Edition, Routledge, 2015
- G.D. Rai, Non-Conventional Energy Sources, Sixth Edition, Khanna Publications, 2017

- 1. Wendell H. Wiser, Energy Resources: Occurrence,
- Sukhatme S.P. Nayak.J. P, 'Solar Energy Principle of Thermal Storage and Collection", Tata McGraw Hill, 2008.
- 3. Wei Tong, Wind Power Generation and Wind Turbine Design, WIT Press, 2010.

Course Tit	e Supp	Supply Chain Management						B.Tech ME VI Sem		
Course Cod	le Category	H	Hours/Week			Maximum Marks				
20OE310	OEC-II	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		3	0		3	40	60	100		
Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs										
Course Obje	ectives:									
. The objecti	ves of this course are	to								
• Expla	in the basics of suppl	y chain	manager	ment.						
• Famil	iarize inventory man	agemen	t techniq	ues and	l models to	ensure EOQ bate	ch size un	nder risk		
mana	gement.									
• Demo	onstrate various distri	bution s	trategies	for ship	oment of pr	oducts.				
• Focus	on evaluating of stra	tegic al	liance pa	rtners a	nd understa	anding of RDBM	S.			
Course Outo	comes: On successful	comple	etion of t	his cou	se, the stud	ents will be able	to			
CO1 Appl	y the concepts of sup	ply chai	in manag	gement	for demand	forecasting.				
CO 2 Use	of SCM and inventor	y manag	gement fo	or procu	irement.					
CO 3 Anal	yze the shipment acti	vities a	nd relate	d issues	•					
CO 4 Build	l third party alliances	•								
CO 5 Adap e-cor	5 Adapt the RDBMS data for communications and analyzing future challenges and understand e-commerce strategies									
LINIT - I	-									

<u>UNIT - I</u>

Understanding the supply chain

Understanding the supply chain: What is SCM? Why SCM? The Complexity, Key issues in SCM Logistics network - Introduction, Data Collection, Transportation, Ware house Management, Demand forecasting, Role of aggregate planning, MRP, ERP.

UNIT - II

Inventory management

Inventory management: Concepts of Materials Management, Economic lot size model, Effect of Demand uncertainly, Fixed order costs, Variable lead frames, Inventory under certainly & uncertainty.

UNIT - III

Distribution strategies

Distribution strategies: Introduction, Centralized vs Decentralized control, Direct shipment, Cross Docking, Push based vs Pull based supply chain.

UNIT - IV

Strategic alliances

Strategic alliances: Third party Logistics (3PL), Retailer – supplier relationship issues,

requirements, success & failures, Distributor integration Types & issues.

UNIT - V

MIS & SCM

MIS & SCM: Relational Data Base Management (RDBMS), System Architecture, Communications, and Implementation of ERP, Decision support systems for SCM: e-Commerce strategies and world class supply chain management.

Text Books:

1. Sunil Chopra, Peter Meindl, Supply Chain Management: Strategy, Planning, and Operation, 4/e, Pearson, 2010.

2. David N. Burt, Donald W. Dobler, World Class Supply Management: The Key to Supply Chain Management, 2/e, McGraw-Hill/Irwin, 2003.

3. Nabil Abu el Ata, Rudolf Schmandt, Essentials of Supply chain management; Westland Publications. (2016),

Reference Books:

1. John Joseph Coyle, Edward J. Bardi, C. John Langley, The Management of Business Logistics: A Supply Chain Perspective, South-Western/Thomson Learning, 2003.

2. UpendraKachru ,Logistics and Supply Chain Management, Excel Books, 2009.

3. D. K .Agarwal, Supply Chain Management with efficient Logistics, MACMILAN 2019.

Course Title		Introd	uction	SI	Open Electiv	/es		
Course Code	Category	Hours/Week Credits				Maximum Marks		
200E403	OE	L	Т	Р	С	Continuou s Internal Assessment	End Exams	Total
		3	-		3	40	60	100

Mid Exam Duration: 90Min

Course Objectives:

- To introduce the concepts of IC fabrication technologies.
- To understand scaling techniques of CMOS devices and their effects.
- To study the methods to design the basic Gate level designs and draws their corresponding Layouts.

End Exam Duration: 3Hrs

• To provide basic idea of Subsystem design, PLDs and CMOS testing.

Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Understand the operation of a MOS transistor down to the physical level.					
CO 2	Implement various logic gates and circuits using MOS transistors.					
CO 3	Analyze PLD and FPGA families for logic design.					
CO 4	Analyze various CMOS testing schemes.					

Unit-I

Introduction to VLSI: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & Bi CMOS technologies- Oxidation, Lithography, Diffusion, Ion implantation, Metallization, Encapsulation.

Unit-II

Basic Electrical Properties: Basic Electrical Properties of MOS Circuits: Ids Vs Vds relationships, MOS transistor threshold Voltage, gm, gds, Figure of merit, Pass transistor, NMOS Inverter, CMOS Inverter analysis and Bi-CMOS Inverters.

Unit-III

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2μ CMOS Design rules for wires, Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits, Limitations of Scaling.

Unit-IV

Subsystem Design: Basic circuit concepts: Sheet resistance, area capacitance and delay calculation, Subsystem Design, Shifters, Adders, ALUs, Multipliers, High Density Memory Elements.

Unit-V

Semiconductor IC Design and CMOS testing: PLAs, FPGAs, CPLDs, Standard Cells, ach. CMOS Testing, Need for testing, Test Principles, Design Strategies for test, Layout Design for improved Testability.

Text Books:

1. Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, Essentials of VLSI circuits and systems, PHI, 2005 Edition.

2. Weste and Eshraghian, Principles of CMOS VLSI Design, Pearson Education, 1999.

- 1. John .P. Uyemura, Introduction to VLSI Circuits and Systems, JohnWiley, 2003.
- 2. Wayne Wolf, Pearson Education, Modern VLSI Design, 3rd Edition, 1997.
- 3. S.M. SZE, VLSI Technology, 2nd Edition, TMH, 2003.

Course	Title		Princi comm	ples of unicati	on sys	tems	Open Electives		
Course	Code	Category	Ho	ours/We	ek	Credits	Maximum Marks		
200E	E404 OE		L	Т	Р	С	Continuou s Internal Assessment	End Exams	Total
			3	-		3	40	60	100
Mid Exa	Mid Exam Duration: 90 MinEnd Exam Duration: 3Hrs								
•] •] •]	 To understand the Basics of Telecommunication Engineering. To introduce the Elements of Telecommunication systems. To provide Knowledge about various communication systems 								
Course	Outcon	nes: On success	sful com	pletion of	of this c	ourse, the	students will b	e able to	
CO 1	Under	stand the fund	lamenta	l conce	pts of T	elecommu	inication Engi	neering.	
CO 2	Under Comm	stand use of d nunication.	ifferent	modula	tion tec	chniques u	ised in Analog	and Digi	tal
CO 3	3 Understand different Telecommunication systems like Satellite communication, Optical Fiber communication, Wireless communication, Mobile communication etc. and its applications.								
CO 4	Compa Teleco	are and communication	ontrast system:	advaı 5.	ntages	and li	mitations c	of vario	ous

Unit I

Basics of Telecommunication Engineering: Definition of Telecommunication, Examples of telecommunications and evolution, various types of telecommunication systems such as telephone network, Radio broadcasting system, Computer networks, Internet.

Unit II

Basic Elements of Telecommunication systems General Block schematic of communication system, Communication channels, Analog versus digital communication systems, Need of modulation, Types of analog modulation such as AM and FM, Types of digital modulation such as Pulse code modulation, delta modulation, Continuous wave modulation such as ASK, FSK, PSK.

Unit III

Introduction to Optical Fiber Communication: Use of optical fiber in communication, Principle and working of OFC system, Block diagram, Types of optical fibers, various elements required in designing OFC system, Applications such as long distance transmission links, Computer communication networks.

Unit IV

Introduction to Satellite Communication: Use of satellite in telecommunications, Launching of Satellite from earth station, Types of satellite

orbits, Classification of satellite according to applications, Satellite communication link block diagram.

Unit V

Some concepts in Wireless communications: Wireless Standards: Overview of 2G and 3G, 4G cellular standards, Multiple access schemes-FDMA, TDMA, CDMA and OFDM, Modulation schemes- BPSK, QPSK. GSM, Wi-Fi & Wi-Max, Bluetooth, Recent Trends/Developments.

Text Books:

- 1) Simon Haykin," Communication Systems", 4th Edition, John Wiley Publication.
- 2) George Kenndey, "Electronics Communication systems", 4th Edition
- 3) John G. Proakis," Digital Communication", Tata McGraw Hill
- 4) T. Prat, C.W. Bostian," Satellite Communication", Wielly Publication

- 1. S. Rappaport," Wireless communication Principles and Practice", Pearson Education.
- 2. John M. Senior,"Optical Fiber Communication Principles and Practice", Pearson Education.

Course Title	(O _]	Java Pr pen Ele	ogramn ctive Co II)	B. Tech V	I Sem (R20)) CSE			
Course Code	Category	H	ours/We	eek	Cred its	Maximum Marks			
20OE503	OE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Tot al	
	C	3	0	0	3	40	60	100	
Mid Exam Duration: 90 Mins						End Exam Duration: 3Hrs			

Course Objectives:

- To give the students a firm foundation on Java concepts like Primitive data types, Java control flow, Methods, Object-oriented programming, Core Java classes, packages and interfaces, multithreading.
- To provide the students with an understanding of Java applets, Abstract Window, Toolkit and exception handling.

Course	Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Solve problems using object oriented approach and implement them using Java.						
CO 2	Develop efficient programs with multitasking ability and handle exceptions.						
CO 3	Develop user friendly interface.						
CO 4	Create AWT components.						

<u>UNIT - I</u>

Object Oriented Programming basics: Need for OOP paradigm, Principles of OOP concepts

Java Basics: History of Java, Java buzzwords, Simple java program, classes and objects – concepts of classes, objects, constructors, methods, introducing access control, **this** keyword, overloading methods and constructors.

<u>UNIT - II</u>

Inheritance: Hierarchical abstractions, Types of Inheritance, benefits of inheritance, **super** uses, using **final** with inheritance, polymorphism- method overriding, abstract classes.

Packages and Interfaces: Defining, Creating and Accessing a Package, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces.

<u>UNIT - III</u>

Exception handling: Concepts of exception handling, exception hierarchy, usage of try, catch, throw, throws and finally, creating own exception sub classes.

<u>UNIT - IV</u>

Event Handling : Events, Event sources, Event classes, Event Listeners, The AWT class hierarchy, user interface components- Labels, Button, Scrollbars, Text Components, Check box, Choices,

Layout manager types - Flow, Border, Grid, Card and Grid bag.

<u>UNIT - V</u>

Applets: Concepts of Applets, differences between applets and applications, life cycle of an Applet, creating applets, passing parameters to applets.

Swings: Icons and Labels, text fields, JButton class, Check boxes, Radio buttons, Combo boxes, and Tables.

Text Books:

- 1. Java; the complete reference, 7th editon, Herbert schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson Education.
- An Introduction to programming and OO design using Java, J.Nino and F.A.Hosch, John wiley & sons.
- 4. An introduction to Java programming and object oriented application development, R.A. Johnson- Thomson.

- 1. Core Java 2, Vol 1, Fundamentals, Cay.S.Horstmann and Gary Cornell, eighth Edition, Pearson Education.
- 2. Core Java 2, Vol 2, Advanced Features, Cay.S.Horstmann and Gary Cornell, eighth Edition, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, University Press.
- 4. Java and Object-Oriented programming Paradigm, Debasish Jana, PHI Learning Pvt. Ltd.

Course	e		Web D	esignin	g		B. Tech VI Sem (R20) CSE		
Title		(O <u>]</u>	oen Ele	ctive Co	ourse-			,	
				II)					
Course	e	Category	Hours/Week (Cred	Maxi	mum Mar	ks
Code			its						
20OE	504	OE C	L	Т	Р	С	Continuous Internal Assessment	End Exa ms	Tot al
		3	0	0	3	40	60	100	
	Mid I	Exam Duration	End Exam Dura	nd Exam Duration: 3Hrs					
Course	Course Objectives:								
• To]	learn the	e basic principle	es of W	eb page	design.				
• To	learn the	e basic concept	s of HT	ML.					
• To :	introduc	e client side sc	ripting	with Jav	a Scrip	t.			
• To :	introduc	e the concepts	of CSS	and We	eb publi	shing.			
Course	Outcom	es: On success	ful con	pletion	of this o	course, the	e students will b	e able to	
CO 1	Define	the principle o	f Web J	page des	ign and	basics in	web design.		
CO 2	Visuali	ize the basic co	ncept o	f HTML	and re	cognize th	ne elements of H	TML.	
CO 3	Unders	stand java Scrip	ot and c	reate stat	tic web	pages.			
CO 4	Introdu	ice basics conc	ept of C	CSS.					
CO 5	Develop the concept of web publishing.								

<u>UNIT – I</u>

Web Design Principles: Basic principles involved in developing a web site, Planning process, Five Golden rules of web designing, Designing navigation bar, Page design ,Home Page Layout, Design Concept.

Basics in Web Design: Brief History of Internet, What is World Wide Web, Why create a web site, Web Standards, Audience requirement.

<u>UNIT – II</u>

Introduction to HTML: What is HTML, HTML Documents, Basic structure of an HTML document, Creating an HTML document, Mark up Tags, Heading-Paragraphs, Line Breaks, HTML Tags.

Elements of HTML: Introduction to elements of HTML, Working with Text, Working with Lists, Tables and Frames, Working with Hyperlinks, Images and Multimedia, Working with Forms and controls.

<u>UNIT – III</u>

Java Script: Introduction, Basics of Java Script, Control Structures, Pop up Boxes, Functions, Arrays Events, Objects, Dynamic HTML.

<u>UNIT – IV</u>

Introduction to Cascading Style Sheets: Concept of CSS, Creating Style Sheet, CSS Properties, CSS Styling(Background, Text Format, Controlling Fonts), Working with block elements and objects, Working with Lists and Tables, CSS Id and Class, Box Model(Introduction, Border properties, Padding Properties, Margin properties), CSS Advanced(Grouping, Dimension, Display, Positioning, Floating, Align, Pseudo class, Navigation Bar, Image Sprites, Attribute sector), CSS Color, Creating page Layout and Site Designs.

<u>UNIT – V</u>

Introduction to Web Publishing or Hosting: Creating the Web Site, Saving the site, working on the web site, Creating web site structure, Creating Titles for web pages, Themes-Publishing web sites.

Text Books:

- 1. Creating a Web Page and Web Site College, 2002, Murray, Tom/Lynchburg.
- 2. HTML 5 in simple steps Dreamtech Press, Kogent Learning Solutions Inc.
- 3. A beginner's guide to HTML NCSA,14th May,2003.

- 1. HTML, XHTML, and CSS Bible, 5ed, HTML, XHTML, and CSS Bible, 5ed, Wiley India.
- 2. Beginning HTML, XHTML, CSS, and JavaScript by John Duckett, Wiley India.
- 3. Beginning CSS: Cascading Style Sheets for Web Design by Ian Pouncey, Richard York, Wiley India.

Cours	e Title	OPE (Ope	RAT n Elec	ING S tive C	SYSTI Course	EMS – II)	B.Tech. VI Sem (R20UG) AI&ML			
Course	e Code	Category	Hou	ırs / V	Veek	Credits	Maximum Ma	arks		
20OF	DE3903 OEC		L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs										
Course Objectives:										
•	Have a	an overview	of fu	nction	s of o	perating sy	vstems.			
•	Have a	a thorough k	knowl	edge o	of proc	ess manag	gement and memory ma	anagement.		
•	To hav	ve a thoroug	h kno	wledg	e of h	ow handle	to deadlocks.			
•	Learn t	he concepts	of file	es, pro	tectio	n and secu	rity			
Course	e Outco	mes: On su	iccess	ful co	mplet	ion of this	course, the students	will be able to		
CO1	Under	stand the ba	sic co	ncepts	s relate	ed to the op	perating systems			
CO2	Analy	ze the var	rious	proce	ess s	cheduling	algorithms and pro	ocess synchro	nization	
	mecha	nisms.		1		U	0	2		
CO3	Analy	ze the vario	us me	mory	manag	gement sch	emes.			
CO4	Under	stand the w	ays to	o deal	the d	eadlocks a	nd the basic concepts	s related to file	es in the	
	system	1.								
CO5	Analy	ze the prote	ction a	and se	curity	mechanis	n.			

<u>UNIT – I</u>

Operating Systems Basics: Operating systems functions, Overview of computer operating systems, distributed systems, operating system services and systems calls, system programs, operating system structure.

<u>UNIT – II</u>

Process Management: Process concepts, scheduling-criteria, CPU scheduling algorithms, Evaluation of Scheduling Algorithms.

Concurrency: Process synchronization, the critical-section problem, Peterson's Solution, semaphores, Classic problems of Synchronization, monitors.

<u>UNIT – III</u>

Memory Management: Introduction, Swapping, contiguous memory allocation, paging, structure of the page table, segmentation, virtual memory, demand paging, page-replacement algorithms, Allocation of frames.

<u>UNIT – IV</u>

Deadlocks: system model, deadlock characterization, deadlock prevention, detection and avoidance, recovery form deadlock.

Files: The concept of a file, Access Methods, File Allocation Methods.

<u>UNIT – V</u>

Protection: Protection, Goals of Protection, Principles of Protection, Domain of protection Access Matrix, Implementation of Access Matrix.

Text Books:

1. Abraham Silberchatz, Peter B. Galvin, Greg Gagne, Operating System Concepts", Eighth edition, John Wiley.

2. Andrew S Tanenbaum, "Modern Operating Systems", Fourth Edition, PearsonEducation.

3. William Stallings, "Operating Systems: Internals and Design Principles", Sixth Edition2009, Pearson Education.

4. D.M. Dhamdhere, "Operating Systems, A Concept based Approach", Third Edition, TMH.

- 1. A.S. Godbole, "Operating Systems", Second Edition, TMH.
- 2. Operating Systems: A Spiral Approach Elmasri, Carrick, Levine, TMH Edition.
- 3. Operating Systems H.M. Deitel, P. J. Deitel, D. R. Choffnes, 3rd Edition, Pearson.
- 4. Operating Systems: A Practical Approach, Rajiv Chopra, 4th Edition, S Chand Publishers.

Course Title	DATABASE (Oper	MANA n Elect	AGEM ive Cou	ENT S 1rse – I	YSTEMS I)	B.Tech. VI Sem (R20UG) AI&ML			
Course Code	Category	ry Hours / Week Credits			Credits	Maximum Marks			
20OE3904	OEC	L	Т	Р	С	ContinuousInternal Assessment End Exam		Total	
		3	0	0	3	40	60	100	
Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs									
Course Obje	Course Objectives:								
• To stu	idy the phys	sical a	nd log	gical d	atabase d	lesigns, database m	odeling, rela	ational	
hierarc	hical, and netw	ork mo	odels.						
• To und	derstand and u	use dat	a mani	pulatio	n languag	e to query, update,	and managin	g the	
databas	e.								
• To dev	velop an und	erstand	ing of	essent	tial DBM	S concepts such as	: database s	secure	
integrit	y and concurre	ency.							
Course Outco	omes: On succ	essful	comple	tion of	this cours	se, the students will b	e able to		
CO1 Tou	nderstand the l	basic co	oncepts	and the	applicatio	on of Database systems	5.		

			-	_
CO 2	To understand the basics of SO	DL and constr	uct queries using SOL	

- **CO 3** To understand the Relational Database design principles.
- **CO 4** To apply various Normalization techniques for database design improvement.
- **CO 5** To apply concurrency control and recovery techniques during transaction execution.

<u>UNIT – I</u>

Introduction - Database-System Applications, View of Data, Database languages, Database architecture, Database Users and Administrators.

E-R Model - The Entity Relationship Model, Constraints, Entity Relationship Diagrams, and Extended E-R features.

<u>UNIT – II</u>

Relational Model - Structure of Relational Databases, Database Schema, Keys, Query Languages, Fundamental Relational Algebra Operations, Additional Relational Algebra Operations, Extended Relational Algebra Operations, Modification of Database.

<u>UNIT – III</u>

Introduction to SQL - Data Definition, Basic Structure of SQL Queries, Set Operations, Null Values, Aggregate Functions, Nested Sub queries, Complex queries, views, Modification of the Database.
 Advanced SQL -Integrity Constraints, Dynamic SQL, Functions and Procedures.
 OtherRelational Query Languages - Tuple Relational Calculus, Domain Relational calculus.

<u>UNIT – IV</u>

Normal Forms – Atomic domain and First Normal Form, Keys and Functional Dependencies, Second Normal Form, BCNF, BCNF and Dependency Preservation, Third Normal Form, Lossless Decomposition, Dependency- preserving, Multi valued Dependencies, Fourth Normal Form, Join Dependencies, Fifth Normal Form, and Inclusion dependencies.

<u>UNIT – V</u>

Transactions -Transaction Concept, Transaction State, Implementation of TransactionAtomicity and Durability, Concurrent Executions, Serializability.

Concurrency Control -Lock-Based Protocols, Timestamp-Based Protocols. **RecoverySystem -** Failure Classification, Storage, Recovery and Atomicity, Log based recovery.

Text Books:

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan," Database system Concepts", 5thEdition, McGrawhill.

2. Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", PearsonEducation, 3rd Edition, 2003

3. C.J.Date, "Introduction to Database", 8 Th Edition, 2003, Addison-Wesley publication.

4. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", Pearson Education, United States 1st Edition, 2000

Reference Books:

1. Raghurama Krishnan, Johannes Gehrke, Data base Management Systems.3rd Edition, Tata McGrawHill.

2. Peter Rob, Ananda Rao and Carlos Corone, Database Management Systems, Cengage Learning, 1st Edition, 2011.

3. Thomas Connolly, Carolyn Begg, Database Systems: A Practical Approach to Design, Implementation and Management,6th Edition,2012.

4. S.K.Singh, "Database Systems Concepts, Design and Applications", First Edition, Pearson Education, 2006.

Reference Links:

1. <u>https://nptel.ac.in/courses/106/105/106105175/</u>

2. <u>https://nptel.ac.in/courses/106/106/106106095/</u>

(IIT KHARAGPUR) (IIT MADRAS)

Course Title	MATHEMA DATA SCIE ANALYTIC	ATICAL ENCE & CS (R20)	z STAT z DAT	B. Tech. Open Elective-II					
Course Code	Category	ry Hours/Week			Credits	Maximum Marks			
20OE603	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0		3	40	60	100	
Mid Exam Du	ration: 90 mi	nutes				End Exam Dur	ation: 3Ho	urs	
Course Objec • To hel probabi	tives: p the student ilities.	ts in ge	etting	a tho	orough unde	erstanding of th	e fundame	ntals of	

• To help the students in getting a thorough understanding and usage of statistical techniques like testing of hypothesis.

Course	Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Understand and calculate the measures of dispersion						
CO 2	Analyze probability concepts						
CO 3	Apply distributions in real life problems.						
CO 4	Justify hypothesis concepts						
CO 5	Estimate correlation and regression coefficients						

UNIT I:

Introduction, Mean, Median, Mode, Skewness, Range

Learning Outcomes:

At the end of this unit, the student will be able to

• understand and calculate the measures of dispersion

UNIT II:

Probability Basics, Simple probabilities, Rule of addition, Rule of multiplication, Conditional Probability, Baye's theorem.

Learning Outcomes:

At the end of this unit, the student will be able to

• analyze probability concepts

UNIT III:

Explaining basic concepts of Random Variables (Without Problems)- Probability Distributions: Binomial distribution, Poisson distribution, Normal distribution, Real life problems

Learning Outcomes:

At the end of this unit, the student will be able to

• apply distributions in real life problems.

Introduction, Hypothesis, Level of Significance, Type I and Type II errors, Confidence intervals for large Samples (only means and Proportions), Calculating sample size and power. Learning Outcomes:

At the end of this unit, the student will be able to

• justify hypothesis concepts

UNIT V:

Introduction, Linear Regression, Correlation coefficient, Coefficient of determination, Root Mean Square Error.

Learning Outcomes:

At the end of this unit, the student will be able to

• estimate correlation and regression coefficients

Text Books:

- 1. Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers-42 edition.
- 2. Statistical Methods by S.P.Gupta, S Chand Publications
- 3. Probability and Statistics for Engineers, Johnson, Fifth edition, Prentice Hall of India.

4. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Publications, 9th edition-2013.

- 1. Probability and Statistics by E. Rukmangadachari & E. Keshava Reddy, Pearson Publishers.
- 2. Probability and Statistics for Engineers and Scientists, Walpole and Myers, Seventh edition, Pearson Education Asia, 2002
- 3. An Introduction to Probability theory and its applications, William Feller
- 4. Engineering Mathematics by Srimanta Pal, Subodh C. Bhunia, Oxford University Press.

Course Title	BASICS OF AND OPTO	ELECT ELECT	FRICAI RONIC	L, MAG L MATI	NETIC ERIALS	OPEN ELECTIVE- II			
Course Code	Category	Hours/Week			Credits	Maxi	imum Marks		
20OE608	BSC	L	Т	Р	С	Continuous Internal Assessment	End lab Exams	Total	
		3	0	0	3	40	60	100	
						End Exam	Duration: 3	Hrs	

COURSE OBJECTIVES:

1.Students will be able to understand the fundamental concepts and applications of electrical, magnetic and optical properties of materials.

2.Apply a multi-disciplinary approach to plan, design, identify and address future needs of all the conventional and novel materials utilizing their properties for the society.

COURSE OUTCOMES: Upon completion of this course, the student will be able to:

CO1	Obtain knowledge about the electrical, magnetic and optoelectronic materials, their properties and applications
CO2	Successfully apply advanced concepts of materials engineering for the design, development and analysis of materials and devices.
CO3	Develop novel materials from the fundamental understanding of materials and apply them to societal needs.
CO4	Analyze the properties of superconductors.
CO5	Identifies the Engineering applications of electrical, magnetic and optoelectronic materials.

Unit – I: Electrical Materials

Introduction to electrical conduction–Dielectric constants – dielectric loss, dielectric breakdown, piezoelectricity and pyroelectricity.

Unit – II: Magnetic Materials

Introduction to dia, para, ferro, antiferro and ferri magnetism –Hysteresis loop–hard and soft magnetic materials- applications

Unit – III: Semiconducting Materials

Introduction to semiconducting materials – concept of doping – working principle of p-n junction diode, LED, Photo diode– solar cell – applications.

Unit – IV: Superconducting

Introduction to superconductors-Properties-Meissner effect-Type-1 & Ttype-II superconductors –BCS theory- high critical temperature (Tc)-applications.

Unit – V: Optoelectronic Materials

Introduction to Laser Principles – ruby, CO_2 lasers – applications of optoelectronic materials – introduction to optical fibers – light propagation –Fiber optic sensors-applications.

Text Books:

1. C. Kittel, Introduction to Solid State Physics, John Wiley and Sons, 7th edition, New Delhi, (2004).

2. Engineering Physics – K. Thyagarajan, McGraw Hill Publishers

3. Engineering Physics – Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company

Reference Books:

1. V. Raghavan, Materials Science and Engineering, Prentice Hall of India, 5th edition, New Delhi, (2013).

2. B. G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, Springer, 1st edition, New York, (2013).

3. S. Kasap and P. Capper (eds.), Handbook of Electronic and Photonic Materials, Springer, New York, (2007).

Cours	se Title	С	Corrosio	n and (Control		B. Tech. (Open elective-II)		
Cours	e Code	Category	Ho	ours/We	eek	Credits	Maximum Marks		
200	E609	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	0	0	3	40	60	100
Mid Exa	d Exam Duration: 90 Min End Exam Duration: 3Hrs								n: 3Hrs
Course	Objective	s:							
•]	Fo review	the fundamer	ntal aspe	ects of el	lectroch	emistry.			
• I	t also focu	ses on variou	is forms	of corre	osion, a	nd their im	pact on life of	metallurg	ical
C	component	s, means and	ways to	o engine	er corro	osion			
Course	Outcomes	s: On success	ful com	pletion	of this c	course, the	students will b	e able to	
CO 1	Recall th	e concepts of	f corrosi	on and	its mecl	nanism.			
CO 2	Explore	different form	ns of co	rrosion	and its	mechanism	s & preventior	n methods	•
CO 3	CO 3 Analyze different factors which influence corrosion in different medium								
CO 4	Identify	different con	trol met	hods for	r efficie	nt control o	of corrosion		
CO 5	D 5 Discuss corrosion aspects which will enable them to apply for modern engineering technology								

Unit-1: Introduction

Introduction to corrosion, definition and types of Corrosion (Chemical- & Electrochemical Corrosion-Evolution of Hydrogen gas & Absorption of Oxygen) & its mechanisms, Pilling Bed worth Rule , Galvanic series & its applications, Factors influencing corrosion-Metal & environment..

Learning Outcomes:

At the end of the unit, The students will be able to

- Explain the types of corrosion.
- Identify the factors which influence corrosion.

Unit-2: Corrosion& Various phenomenon

Uniform Corrosion (definition, mechanism & prevention), Galvanic (Two-metal) Corrosion (Definition, mechanism & prevention), Pitting corrosion (Definition, mechanism & prevention), Concentration Cell Corrosion (Definition, mechanism & prevention), Differential aeration method (Definition, mechanism & prevention)

Learning Outcomes:

At the end of the unit, The students will be able to

- Explain the mechanisms and prevention methods of different forms of corrosion.
- Analyze the differences between pitting and galvanic corrosion.

Unit-3: Environmental Factors on Corrosion

Various factors that influence Corrosion- Corrosion in water and aqueous solution,

microbiologically induced corrosion, corrosion in acidic and alkaline medium.

Learning Outcomes:

At the end of the unit, The students will be able to

• discuss various environmental factors which influence the corrosion

Unit-4: Prevention & Control

Basic principle & concepts of prevention of corrosion-Cathodic protection (Sacrificial anodic protection, Impressed current Cathodic protection), Electroplating & Electroless plating-Definition with examples (Nickel & Copper), advantages - Alternation of Environment.

Learning Outcomes:

At the end of the unit, The students will be able to

- explain the prevention methods of corrosion
- discuss the basic concepts of electroplating and electroless plating

Unit-5: Modern theory and applications of corrosion:

Introduction, Gibb's free energy, cell potentials, EMF series, Corrosion rate expressions, Importance of corrosion in engineering technology & industrial applications.

Learning Outcomes:

At the end of the unit, The students will be able to

- Analyze the rate of corrosion
- Explain the importance of Electrochemical series

Textbooks:

- 1. Text Book of Engineering Chemistry, Shashi Chawla, Dhanapath Rai Publications, New Delhi, 4th Edition, 2011.
- 2. Corrosion of metals, Helmut Kaesche, Springer Publications
- 3. Handbook of Corrosion Engineering, 3rd edition, Pierre R. Roberg, McGraw Hill publications
- 4. General Chemistry for Engineers, Jeffrey S. Gaffney & Nancy A. Marley, Elsevier publications

REFERENCES:

1. Corrosion engineering, Fontana Mars G, Mc Graw Hill publications

2. A Text Book of Engineering Chemistry, Jain and Jain, Dhanapath Rai Publishing Company, New Delhi, 15th Edition, 2010

3. Corrosion and chemical resistant masonry materials Handbook, Walter T.V. Sheppard Lee, Building materials series.

4. General chemistry by Ebbing Darrell, Himalaya Publications

Course	e Title	Academic Writing OPEN ELECTIVE – I							E – III
Course	e Code	Category Hours/Week Credits Maximum Marks							rks
2001	DE615 HUM L T P C Continuous Assessment End Exams								Total
			3	0	0	3	40	60	100
Mid Exan	n Duratior	n: 90 Min				End]	Exam Duratio	n: 3Hrs	
COURSE	OBJECT	IVES							
1	Demonstr	ate and apply	knowle	edge of b	asic es	say structure	, including intr	oduction, b	oody and
	conclusio	conclusion;							
2	Employ the various stages of the writing process, including pre-writing, writing and re-writing								
3	Identify e	Identify effective writing techniques in his or her own work and in peer writing.							
4	Improve a	prove academic and idiomatic vocabulary;							
5	Understa	nd the import	ance of	academi	ic writi	ng and avoid	l the plagiarism	l	
COURSE	OUTCON	MES							
CO1	Engage w personal)	ith readings c surrounding a	ritically nd und	y by eval erpinnin	uating g each	the various c text	contexts (social	, historical	, or
CO2	Effectivel	y summarize	and ana	alyze var	ious tex	kts while ide	ntifying and hi	ghlighting	their main
	ideas and	messages							
CO3	Develop i	ndependent p	erspect	ives and	argume	ents via persi	uasive support	and succes	sful
	incorpora	tion of researc	h thus	developi	ng thei	r own voice	and creating a	balance bet	tween their
	own voice	e and source s	ummar	ies					
CO4	Practice the	he revision sk	ills nec	essary fo	or the ac	ccomplishme	ent of a writing	project	
CO5	Construct	ively critique	their ov	wn and p	eers' w	riting, with a	an awareness of	f the collab	orative and
	social asp	social aspects of the writing process							

UNIT 1

Academic Writing

Definition- Difference between Academic and Non-academic writing – Four types of academic writing – The 4Cs of Academic Writing- Essentials of a well-structured academic writing- (Introduction, Explanation, Illustration and Conclusion)

UNIT 2

Paragraph structure

Topic sentence - supporting examples - transition sentence- Basic rhetorical modes Narration-description – exposition

UNIT 3

Writing Process and strategy

Writing Process and strategy research, planning, summarizing, organizing, plagiarism, referencing, proofreading

UNIT 4

Structure of research paper

Structure of research paper (organizing the document, transition, data implementation and display)

UNIT 5

Writing Vocabulary and language

Writing Vocabulary and language (precision, clarity, conciseness, academic vocabulary, word choice)

Text Books:

1. Hairston, et al. The Scott, Foresman Handbook for Writers (San Francisco: Longman 2002 or latest edition)

2. Stephen Bailey Academic Writing: A Handbook for International Students

- 3. A Short Guide to College Writing, 5th edition, by Barnet, Bellanca, and Stubbs.
- Power of Habit by Charles Duhigg. Random House Trade Paperbacks. ISBN: 978-0-8129-8160-5. Available at the IVC bookstore. You MAY use hard copy or digital version.
- 5. Writing Clearly: Grammar for Editing 3rd Ed. by Janet Lane & Ellen Lange. Heinle Cengage Learning, 2012 ISBN 978-1-111-35197-7. Available at the IVC bookstore.

Course Title	Basics of	Financ Enş	ial Mar gineers	nagen	nent for	B Open	. Tech. Elective - [II
Course Code	Category	Hours/Week		Credits	Maximum Marks		ζS	
200E611	Open Elective (OEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
Mid Exam Duration: 90 Min						End Exam	Duration	: 3Hrs

Course Objective:

• Provide an in-depth view of the process in financial management.

• Develop knowledge on the allocation, management and funding of financial

resources.

- Improving students' understanding of the time value of money concept and the role of a financial manager in the current competitive business scenario.
- Enhancing student's ability in dealing short-term dealing with day-to-day working capital decision; and also longer-term dealing, which involves major capital investment decisions and raising long-term finance.

Course Out	tcomes: On successful completion of this course, the students will be able to
CO 1	Knowledge of the basics of Financial Management Concepts.
CO 2	To learn the concept of cost of capital and making decisions regarding raising of capital
CO 3	To understand the concept of Capital structure evaluation and related decisions.
CO 4	To build knowledge about financing and estimation of Working capital management.
CO 5	To understand the concepts of TVM, capital budgeting decisions and evaluation of Projects.
CO 6	Understanding of mergers, acquisitions and various other types financial restructurings

Unit I

Introduction to Financial Management - Concept of Business Finance, Functions of Finance, scope of Finance, Role of a Finance Manager, Goals , objectives of Financial Management, Functional areas.

Unit II

Cost of Capital - Long Term sources of finance, Concept, meaning & importance, Opportunity Cost of capital, Cost of different sources of finance, Weighted average cost of capital, factors affecting cost of capital.

Unit III

Budgeting: budgets, purpose, budgetary control, preparation of budgets, master budget, fixed and flexible

Budgeting.

Unit IV

Working Capital Management - Concept of working capital, significance, types of working capital, Factors affecting working capital needs, financing approaches for working capital, working capital estimation and calculation.

Unit V

Capital Budgeting Decision - Time Value of Money, Capital budgeting - Introduction, techniques of capital budgeting -Pay Back Method, Accounting Rate of Return, Net Present Value, Profitability Index, and Internal Rate of Return.

Text Book:

- 1. Financial Management by Dr. R. P. Rustagi, Taxmann's Publication.
- 2. Financial Management: Principles and Applications by Pearson Education; Thirteenth edition, Sheridan Titman,
- 3. Financial Management by I M Pandey, Pearson Education; Twelfth edition.
- 4. Fundamentals of Financial Management by <u>Eugene F. Brigham, Joel F. Houston</u>, Brigham Houston, seventh edition.
- 5. Financial Management Theory and Practice by Michael C. Ehrhardt and Eugene F. Brigham, Publisher, Joe Sabatino.

- 1. Financial Management: Theory & Practice by Eugene F. Brigham and Michael C. Ehrhardt; Cengage Learning; 15 edition.
- 2. Fundamentals of Financial management by Dr. Eugene Brigham and Dr. Joel F.Houston: Cengage learning, Philippine Edition.
- 3. Financial Management Principles and practice by G. Sudarsana Reddy, Himalaya Publishing House.
- 4. Financial Management by Khan & Jain, Tata Mcgraw Hill.
- 5. Financial Management by Dr. P C Tulsian, S Chand.
- 6. Financial Management by Ravi Kishore, Taxmann.

Course Title	Intelligen	t Coi	ntrol	Tech	niques	B. Tech. El Open Elective	EE e - III	
Course Code	Category	Hou	ırs/W	eek	Credits	Maximum Marks		
200E205	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
	(OEC)	3	1	0	3	40	60	100
Mid Exam Duration: 1Hr30M						End Exam Durat	ion: 3Hr	'S

Course Objectives: The objective of the course is to learn neural network and fuzzy logic concepts and foster their abilities in designing and implementing soft computing based solutions for real-world and engineering problems.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Understand architecture and approach to Artificial intelligence
CO 2	Understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms and their models
CO 3	Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy inference systems, and fuzzy logic systems
CO 4	Understand the Bio-inspired and Swarm Intelligence Algorithms

<u>UNIT - I</u>

Introduction to Artificial Intelligence: Introduction and motivation – Approaches to AI – Architectures of AI – Symbolic Reasoning System –Rule based Systems – Knowledge Representation.

<u>UNIT - II</u>

Artificial Neural Networks: Basics of ANN - Comparison between Artificial and Biological Neural Networks – Basic Building Blocks of ANN – Artificial Neural Network Terminologies – McCulloch Pitts Neuron Model – Learning Rules.

<u>UNIT - III</u>

ADALINE and MADALINE Models – Perceptron Networks – Back Propagation Neural Networks – Associative Memories Neural Networks as Associative Memories

<u>UNIT - IV</u>

Fuzzy Logic: Classical Sets – Fuzzy Sets – Fuzzy Properties and Operations – Fuzzy Logic System – Fuzzification – Defuzzification – Membership Functions – Fuzzy Rule base – Fuzzy Logic Controller Design.

<u>UNIT - V</u>

Evolutionary Computation - Overview of other Bio-inspired Algorithms - Swarm Intelligence Algorithms

<u>Text Books</u>

1. Introduction to Neural Networks using MATLAB by S. N. Sivanandam, S. Sumathi and S. N. Deepa, Tata McGraw Hill Edition, 2006.

- 2. Kumar S., "Neural Networks A Classroom Approach", Tata McGraw Hill, 2004.
- 3. Fuzzy Logic with Engineering Applications by Timothy J. Ross, WILEY India Edition, 3rd Edition, 2012.

Reference Books

- 1. Intelligent System Modeling, Optimization & Control by Yung C. Shin and Chengying Xu, CRC Press, 2009.
- 2. Eiben A. E. and Smith J. E., "Introduction to Evolutionary Computing", Second Edition, Springer, Natural Computing Series, 2007.
- 3. Engelbrecht A. P., "Fundamentals of Computational Swarm Intelligence", John Wiley & Sons, 2006.

Course Title	Electrical	Syste Co	em Es sting	stima	tion &	B. Tech. EEE Open Elective - III		
Course Code	Category	Но	Hours/Wee Credit k s			Maximum Marks		
200E206	Open Elective	L	L T P		С	Continuous Internal Assessment	End Exam	Total
	(OEC)	3	0	0	3	40	60	100
Mi	Mid Exam Duration: 1Hr30M End Exam Duration: 3Hrs							'S
Course Ob wiring syste	Course Objectives: The objective of the course is to learn about estimating and costing of wiring systems, earthing systems, various light schemes and its calculations.							
Course Ou	tcomes: On s	ucces	ssful	comp	letion of	this course, the students	will be abl	le to
CO 1	Understand wiring system	princ m	iples	of wi	iring syste	ems and its estimation ba	ised on ch	oice of
CO 2	Understand the concepts of earthing systems							
CO 3	Understand various lightening schemes and its calculations used for domestic and industrial applications							
CO 4	Analyze esti	Analyze estimation of wiring to residential & commercial buildings						

<u>UNIT-I</u>

General principles of estimating: Estimating – purpose of estimating and costing – catalogues – market survey and source selection - determination of required quantity of materials – determination of cost material and labor.

Wiring systems: Introduction – Systems of distribution of electrical energy – methods of wiring – systems of wiring – choice of wiring systems.

<u>UNIT – II</u>

Earthing Systems: Earthing – Points to be earthed – Factors influencing earth resistance – methods od reducing Earth resistance – Design data on earth electrodes – Methods of earthing – determination of size of earth wire and earth plate – Effects of electric current on

Human body – Measurement of earth resistance.

<u>UNIT - III</u>

Lighting schemes and calculations: Types of lighting circuits – Various circuit diagrams – Two way switching – Aspects of good lighting service – Types of lighting schemes – Filament Lamps- Gas filled Lamps – Fluorescent Tubes - LED lamp – Compact Fluorescent lamp (CFL) – comparison between LED and CFL – terms used in illumination – laws of illumination.

<u>UNIT - IV</u>

Estimation of lighting schemes: Design of lighting schemes - Factory lighting – Public lighting installations: Classification – General principles – Design – Selection of equipment - Street lighting – Methods of lighting calculations.

<u>UNIT-V</u>

Internal wiring estimation: General rules for wiring – determination of number of points – determination of total load – determination of sub circuits – determination of ratings of main switch and distribution board – determination of size of conductor – layout – simple problems.

Text books

- $1. \ Electrical installation estimating \& Costing J.B. Gupta, S.K. Kataria\& \ sons.$
- 2. Electrical design estimating and costing K.B.Raina&S.K.Bhattacharya, NewAge International (P) Limited publishers.

- 1. Power System Analysis and Design Dr.B.R.Gupta, S.Chand Publications
- 2. Electrical Estimating methods Wayne J.Del Pico, Wiley Publishers

Course Title	Entrepreneu	ırship			B.Tech ME	VII Sem		
Course Code	Category	Hours/Week Credits			Maximum M	larks		
200E311	OEC- III	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0		3	30	70	100
Mid Exam Duration: 90 Minutes					End Exar	n Duration• 3H	[rs	

Mid Exam Duration: 90 Min

Course Objectives:

- Understand the concepts of entrepreneurship, its need and scope Understand meaning of term entrepreneur, classification of entrepreneur and qualities of an entrepreneur.
- Concept and procedure of idea generation
- Elements of business plan and its procedure
- Project management and its techniques
- 5Behavioral issues and Time management

Course Outcomes: On successful completion of this course, the students will be able to)
--	---

CO 1	Identify opportunities and deciding nature of industry.
CO 2	Know the importance of Women entrepreneurship, Brainstorm ideas for new and innovative
	products or services.
CO 3	Identify the importance of MSME and know the preparation of Business plan.
CO 4	Use project management techniques like PERT and CPM.
CO 5	Analyze behavioral aspects and use time management matrix.

<u>UNIT-I</u>

Entrepreneur and Entrepreneurship: Concept of Entrepreneur, Characteristics of entrepreneur, Functions of an Entrepreneur, Types of entrepreneur, Concept of Entrepreneurship, Types of Entrepreneurship, Enterprise, Types of Entrepreneurial Myths, Challenges and Opportunities in Entrepreneurship in India, Role of Entrepreneurship in Economic Development,

<u>UNIT-II</u>

Women Entrepreneurship and Choice of Technology: Concept of Women Entrepreneur ,Problems of Women Entrepreneur ,Growth of women entrepreneurship in India, Evaluation of ideas and their sources, Selection of Technology, Collaborative interaction for Technology development, Social Responsibility and Business Ethics.

UNIT-III

MSMEs& New Venture Creation: Concept of MSME, Role & Importance of MSMEs, Growth & development of MSMEs in India, Current schemes for MSMEs, Business opportunities in India, Elements of Business Plan and its salient features presenting a business plan.

UNIT-IV

Project Management: During construction phase, project organization, project planning and control using CPM, PERT techniques, Human aspects of project management, Assessment of tax burden.

<u>UNIT-V</u>

Entrepreneurial Behaviours and Motivation: Introduction, Entrepreneurial Input, And Entrepreneurial Motivation: Concept and Need, Theories of Motivation, Motives for Entrepreneur

Time Management: Approaches of time management, their strengths and weaknesses. Time management matrix and the urgency addiction

Text Books:

1. Elias G. Carayannis, Elpida T. Samara "Innovation and Entrepreneurship", Springer 2. Vasant Desai, "Dynamics of Entrepreneurial Development and Management", Himalaya Publishing House, 3. S.S. Khanka, "Entrepreneurial Development", S. Chand & Co. Pvt. Ltd., New Delhi

4. Prasanna Chandra, "Project-Planning, Analysis, Selection, Implementation and Review", Tata Mcgraw-Hill Publishing Company Ltd.

Reference Books:

1. Robert D. Hisrich, Michael P. Peters, "Entrepreneurship", 5/e, Tata Me Graw Hill Publishing Company Ltd., 2015.

2. Stephen R. Covey and A. Roger Merrill, "First Things First", Simon and Schuster Publication.

3. Sudha G.S., "Organizational Behavior", National Publishing House, 1996.

Course Title		Solar Energy	y Systen	ns	B.Tech ME VII Sem						
Course Code		Category	Hours/Week			Credits	Maximum Marks				
200E312		OEC- III	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
			3	0	0	3	40	60	100		
Mid Exam Duration: 90 MinutesEnd						End Exan	Exam Duration: 3Hrs				
Course Ol	Course Objectives:										
	• Familiarize with basics of solar radiation, available solar energy and its measurement.										
	• Familiarize with solar collectors, construction and operation of solar collectors.										
	• Understand solar energy conversion systems, applications and power generation.										
	• Learn the principles PV technology and techniques of various solar cells/ materials for energy conversion				lls for						
• Know the advance current technology of the solar energy systems for making the process economical, environmentally safe and sustainable.											
Course Outcomes: On successful completion of this course, the students will be able to											
CO 1	Gain Knowledge On Basic Concepts Of Solar Radiation And Solar Collectors.										
CO 2	Illustrate Design And Operation Of Solar Heating And Cooling Systems.										
CO 3	Discuss The Principles Of Solar Thermo Photovoltaic cells										
CO 4	Analyze The Performance Of A Solar Cell Array System.										
CO 5	Expla	in Passive Heat	ting Cor	ncepts A	nd Pass	sive Cooling	Concepts.				

<u>UNIT – I</u>

Solar radiation and collectors

Solar angles – Sun path diagrams – Radiation - extra terrestrial characteristics - measurement and estimation on horizontal and tilted surfaces - flat plate collector thermal analysis - testing methods-evacuated tubular collectors - concentrator collectors – classification - design and performance parameters - tracking systems - compound parabolic concentrators - parabolic trough concentrators - concentrators with point focus - Heliostats – performance of the collectors.

UNIT-II

Solar thermal technologies

Principle of working, types, design and operation of - Solar heating and cooling systems -Thermal Energy storage systems – Solar Desalination – Solar cooker : domestic, community – Solar pond – Solar drying.

<u>UNIT – III</u>

Solar PV fundamentals

Semiconductor – properties - energy levels - basic equations of semiconductor devices physics. Solar cells - p-n junction: homo and hetro junctions - metal-semiconductor interface - dark and illumination characteristics - figure of merits of solar cell - efficiency limits - variation of efficiency with band-gap and temperature - efficiency measurements - high efficiency cells – Solar thermo-photovoltaic cells.

UNIT - IV

SPV system design and applications

Solar cell array system analysis and performance prediction- Shadow analysis: reliability solar cell array design concepts - PV system design - design process and optimization detailed array design - storage autonomy - voltage regulation - maximum tracking centralized and decentralized SPV systems - stand alone - hybrid and grid connected system -System installation - operation and maintenances - field experience - PV market analysis and economics of SPV systems.

UNIT - V

Solar passive architecture

Thermal comfort - bioclimatic classification – passive heating concepts: direct heat gain - indirect heat gain - isolated gain and sunspaces - passive cooling concepts: evaporative cooling - Radiative cooling - application of wind, water and earth for cooling; shading - paints and cavity walls for cooling - roof radiation traps - earth air-tunnel. – Energy efficient landscape design - thermal comfort.

Text Books:

1Goswami D.Y., Kreider, J. F. and Francis., "Principles of Solar Engineering', Taylor and Francis, 2000.

2.Chetan Singh Solanki, "Solar Photovoltatics – Fundamentals, Technologies and Applications", PHI Learning Private limited, 2011.

Reference Books:

1. Sukhatme S.P., Nayak.J.P, 'Solar Energy – Principle of Thermal Storage and collection", Tata McGraw Hill, 2008.

2. Solar Energy International, "Photovoltaic – Design and Installation Manual" – New Society Publishers, 2006.

3. Roger Messenger and Jerry Vnetre, "Photovoltaic Systems Engineering", CRC Press, 2010.

Course Ti	tle	Internal Combustion Engine					B.Tech ME VII Sem					
Course Co	ode	Category	Hours/Week			Credits	Maximum Marks					
20OE313		OEC- III	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
			3	0	0	3	40	60	100			
Mid Exam Duration: 90 Minutes						End Exan	End Exam Duration: 3Hrs					
Course Ol	ojectiv	es:										
	• Th	is course provi	des tech	niques o	of apply	ring manage	ment principles to	professio	onal			
	po	sitions held by	Engine	ers and I	Engine	ering Techno	ologists					
 The management functions, especially suited to scientist & Professionals in technical and industrial environment are part of the curriculum Students are exposed to the theory and practices of modern management approaches, tools and techniques in complex industrial & Competitive economic environment 												
Course Outcomes: On successful completion of this course, the students will be able to												
CO 1 Use knowledge and comprehension in management tools to apply in technical organizations.												
CO 2	Understand and build their analytical abilities in the use of Industrial Management											
CO 3	Use management techniques to direct the organizations/industries for goal achievement											
CO 4	Solve problems associated with the operations management and scheduling of resources in efficiently and effectively.											
CO 5	The students may be asked use knowledge of management techniques and write a computer program to address and solve more complicated problems and to study the effect of various parameters on the management/organization											

<u>UNIT – I</u>

Power Cycles:

Carnot cycle, Air standard cycles -Description and representation of Otto cycle, Diesel cycle &

Dual cycles on P–V and T-S diagram -Thermal Efficiency – Comparison of Otto, Diesel and Dual cycles. Simple problems on Otto, Diesel and Dual cycles

<u>UNIT-II</u>

I.C. Engines:

Energy conversion – basic engine components –Classification of I.C. Engines, Working principle of two stroke and four stroke engines - comparison of two stoke and four stroke, SI and CI engines –Valve and port timing diagrams, application of I.C Engines.

<u>UNIT – III</u>

Engine Systems:

Working principle of, Magneto & Battery Ignition System - Simple Carburetor - Common rail

fuel Injection System - Air & Thermostat cooling system - Petrol & Pressure Lubrication system.

UNIT - IV

Combustion in S.I. Engines:

Homogeneous Mixture - Stages of combustion - Importance of flame speed and factors influencing the flame speed –Abnormal Combustion - Phenomenon of Knocking, Summary of Enginevariables affecting the knocking, pre-ignition.

<u>UNIT - V</u>

Testing and Performance:

Engine Performance Parameters - Determination of brake power, friction power and indicated power – Performance test – Heat balance sheet and chart- Emissions from Diesel & Petrol Engines, Euro Norms - Simple problems on performance and heat balance sheet.

Text Books:

- 1. I.C. Engines, V. GANESAN-TMH.
- 2. I.C. Engines / Heywood /McGraw Hill.

- 1. Thermal Engineering / R.K Rajput / Lakshmi Publications.
- 2. I.C Engines Mathur& Sharma DhanpathRai& Sons.
- 3. Engineering fundamentals of I.C Engines Pulkrabek / Pearson /PHI
- 4. Thermal Engineering / Rudramoorthy TMH

Course Title		Electru Instru measu	onic menta remen	Open Electives				
Course Code	Category Hours/Week Credits				Maximum Marks			
200E405	OE	L	Т	Р	С	Continuou s Internal Assessment	End Exams	Total
		3	-		3	40	60	100
Mid Exam Duration: 90 MinEnd Exam Duration: 3H						n: 3Hrs		
Course Objecti To study To unde To unde	ves: Performance or rstand the princ rstand the work	character ciples in ting of C	ristics of Analog CROs, Ti	f Instrur and Dig ransduc	nents. gital Instrui ers and brid	nents. 1ges.		

Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Understand the performance characteristics of an instrument.					
CO 2	CO 2 Understand the principle of analog, digital voltmeters and wave analyzers					
CO 3	3 Explain different types of oscilloscopes					
CO 4	Use AC and DC bridges for relevant parameter measurement.					
CO 5	Apply the complete knowledge of various electronic transducers to measure the					
	physical Quantities in the field of science and technology					

UNIT I

Performance characteristics of Instruments: Static characteristics, Accuracy, Resolution, Precision, Expected value, Error, Sensitivity. Errors in Measurement, Dynamic Characteristics- speed of response, Fidelity, Lag and Dynamic error. **Analog Instruments**: Transistor Voltmeter, Micro Voltmeter (Chopper type) – DC Differential voltmeter – AC voltmeters – Multi meter -wave analyzers (AF & RF) – Harmonic distortion analyzer- Spectrum analyzer.

UNIT II

Digital Instruments: Digital Voltmeters (Ramp, Dual slope, stair case, successive approximation types) Digital multi meter, Universal counter, Digital tachometer, Digital Phase meter.

UNIT III

Cathode Ray Oscilloscopes: Motion of electron in electronic field and in magnetic field- Block diagram of CRO, CRT, Electrostatic deflection sensitivity – Vertical and Horizontal deflection systems – Principle of operation of dual beam, dual trace, sampling and storage CRO's- Measurements with CRO (Voltage, Current, time, frequency, Phase angle, lissajous figures).

UNIT IV

Bridges: Wheat stone bridge, Kelvin Bridge, Measurement of inductance-Maxwell's bridge, Anderson Bridge. Measurement of capacitance-Schearing Bridge, Wien Bridge Errors and precautions in using bridges- Q meter and

measurement methods.

UNIT V

Transducers: Active & passive transducers, Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors. Measurement of physical parameters force, pressure, velocity, humidity, moisture, speed, proximity and displacement. Data acquisition systems.

Text Books:

- 1. H.S. Kalsi," Electronic instrumentation", second edition, Tata McGraw Hill, 2004.
- **2.** A.D. Helfrick and W.D. Cooper,"Modern Electronic Instrumentation and Measurement Techniques",PHI, 5th Edition, 2002.

References:

- 1. David A. Bell, "Electronic Instrumentation & Measurements", PHI (OUP), 2nd Edition, 2003.
- **2.** Robert A.Witte, "Electronic Test Instruments, Analog and Digital Measurements", Pearson Education, 2nd Ed., 2004.
- **3.** K. Lal Kishore, "Electronic Measurements & Instrumentations", by Pearson Education 2005.
| Course | Title | | Introd | uction | Γ | Open Electives | | | |
|--------------------|--|-------------------|------------|----------|-----------|----------------|---------------------------------------|--------------|----------|
| Course | Code | Category | He | ours/We | eek | Credits | Maximum Marks | | |
| 200E406 | | OE | L | Т | Р | С | Continuou
s Internal
Assessment | End
Exams | Total |
| | | | 3 | - | | 3 | 40 | 60 | 100 |
| Mid Exa | Mid Exam Duration: 90 MinEnd Exam Duration: 3Hrs | | | | | | | | |
| Course Objectives: | | | | | | | | | |
| • T | o unde | rstand the basic | s of IOT | • | | | | | |
| • T | 'o study | the Programm | ing Usir | ig Ardui | no. | | | | |
| • T | 'o provi | ide the knowled | lge abou | t sensor | s and tra | ansducers. | | | |
| | | | | | | | | | |
| Course (| Outcon | nes: On success | sful com | pletion | of this c | ourse, the | students will b | e able to | |
| CO 1 | Under | stand about Ic | oT, its Ai | chitect | ure and | its Applic | ations, basic e | electronic | cs used |
| | in IoT | & its role. | | | | | | | |
| CO 2 | Devel | op application | s with C | using A | rduino | IDE. | | | |
| CO 3 | Analy | ze about senso | rs and a | ctuator | ۶. | | | | |
| CO 4 | Desig | n IoT in real tii | ne appli | ications | using t | oday's int | ernet & wirele | ess techn | ologies. |

Unit I

INTRODUCTION: Introduction to IoT: Evolution of IoT – Definition & Characteristics of IoT - Architecture of IoT – Technologies for IoT – Developing IoT Applications Applications of IoT – Industrial IoT – Security in IoT.

Unit II

BASIC ELECTRONICS FOR IoT: Basic Electronics for IoT: Electric Charge, Resistance, Current and Voltage – Binary Calculations – Logic Chips – Microcontrollers – Multipurpose Computers – Electronic Signals – A/D and D/A Conversion – Pulse Width Modulation.

Unit III

PROGRAMMING USING ARDUINO: Programming Fundamentals with C using Arduino IDE: Installing and Setting up the Arduino IDE – Basic Syntax – Data Types/ Variables/ Constant – Operators – Conditional Statements and Loops – Using Arduino C Library Functions for Serial, delay and other invoking Functions – Strings and Mathematics Library Functions.

Unit IV

SENSORS AND ACTUATORS: Analog and Digital Sensors – Interfacing temperature sensor, ultrasound sensor and infrared (IR) sensor with Arduino – Interfacing LED and Buzzer with Arduino.

Unit V

SENSOR DATA IN INTERNET: Sending Sensor Data Over Internet: Introduction to ESP8266 NODEMCU WiFi Module – Programming NODEMCU using Arduino IDE –

Using WiFi and NODEMCU to transmit data from temperature sensor to Open Source IoT cloud platform (ThingSpeak).

Text Books

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-On Approach", 2014. ISBN: 978-0996025515.
- 2. Boris Adryan, Dominik Obermaier, Paul Fremantle, "The Technical Foundations of IoT", Artech Houser Publishers, 2017.

Reference Books

- 1. Michael Margolis, "Arduino Cookbook", O"Reilly, 2011.
- 2. Marco Schwartz, "Internet of Things with ESP8266", Packt Publishing, 2016.
- 3. Dhivya Bala, "ESP8266: Step by Step Tutorial for ESP8266 IoT, Arduino NODEMCU Dev. Kit", 2018.

Course Title		Nano 1	Electro	Open Electives				
Course Code	Category	Hours/Week Credit				Maximum Marks		
200E407	OE	L	Т	Р	С	Continuou s Internal Assessment	End Exams	Total
		3	-		3	40	60	100
Mid Exam Dur	ration: 90 Min					End Exam	Duratio	n: 3Hrs
Course Objecti	ives:							
• To understand the principles of tunneling, lithography and scaling of physical systems.								
• To provi	de the knowled	lge abou	t MEMS	S and N	EMS.			

Course Outcomes: On successful completion of this course, the students will be able to							
CO 1	Understand the divers electronic and device fabrication.						
CO 2	Demonstrate the applications of FET and MOSFET						
CO 3	Describe lithography.						
CO 4	Analyze MEMS and NEMS						

Unit-I

Tunnel junction and applications of tunneling, Tunneling Through a Potential Barrier, Metal—Insulator, Metal-Semiconductor, and Metal-Insulator-Metal Junctions, Coulomb Blockade, Tunnel Junctions, Tunnel Junction Excited by a Current Source. Spintronics and Foundations of nano-photonics.

Unit-II

Field Emission, Gate—Oxide Tunneling and Hot Electron Effects in nano MOSFETs, Theory of Scanning Tunneling Microscope, Double Barrier Tunneling and the Resonant Tunneling Diode.

Unit-III

Introduction to lithography- Contact, proximity printing and Projection Printing, Resolution Enhancement techniques, overlay-accuracies, Mask-Error enhancement factor (MEEF), Positive and negative photoresists, Electron Lithography, Projection Printing, Direct writing, Electron resists. Lithography based on Surface Instabilities: Wetting, De-wetting, Adhesion, Limitations, Resolution and Achievable / line widths etc. Lift off process, Bulk Micro machining.

Unit-IV

Introduction to MEMS and NEMS, working principles, as micro sensors (acoustic wave sensor, biomedical and biosensor, chemical sensor, optical sensor, capacitive sensor, pressure sensor and thermal sensor), micro actuation (thermal actuation, piezoelectric actuation and electrostatic actuation–micro gripers, motors, valves, pumps, accelerometers, fluidics and capillary electrophoresis, active and passive micro fluidic devices, Piezoresistivity, Piezoelectricity and thermoelectricity, MEMS/NEMS design, processing, Oxidation, Sputter deposition, Evaporation, Chemical vapor deposition etc.

Unit-V

Introduction - Scaling of physical systems - Geometric scaling & Electrical system scaling.

The Single-Electron Transistor: The Single- Electron Transistor Single-Electron Transistor Logic, Other SET and FET Structures, Carbon Nanotube Transistors (FETs and SETs), Semiconductor Nanowire FETs and SETs,Coulomb Blockade in a Nanocapacitor, Molecular SETs and Molecular Electronics.

Text Book:

1. Stephen D. Sentaria, Microsystem Design, Kluwer Academic Press

2. Marc Madou, Fundamentals of microfabrication & Nanofabrication.

3. T. Fukada & W.Mens, *Micro Mechanical system Principle & Technology, Elsevier, 1998.*

4. Julian W.Gardnes, Vijay K. Varda, Micro sensors MEMS & Smart Devices, 2001.

Reference Books:

1. WR Fahrner, "Nano Terchnology and Nano Electronics – Materials, devices and measurement

Techniques", Springer.

2. T.Pradeep, "Nano: The Essentials – Understanding Nano Scinece and Nanotechnology", Tata Mc.Graw Hill.

3. M. Ziese and M.J. Thornton, "Spin Electronics"

4. Karl Goser, Peter Glosekotter, Jan Dienstuhl, "Nanoelectronics and Nanosystems – From Transistor to Molecular and Quantum Devices".

Cou Title	e e	(0	Oper Open E	ating S Clective	ystems Cours	s ie -III)	B.Tech VII	I Sem (R2	0) CSE	
Cou Cod	rse e	Category	I	Hours/V	Veek	Credi ts	Maximum Marks			
20OE505		OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Tot al	
			3	0	0	3	40	60	100	
	Mid ExamDuration:90 MinutesEndExamDuration:3Hrs									
Cours	 Course Objectives: Have an overview of functions of operating systems. Have a thorough knowledge of process management and memory management. To have a thorough knowledge of how handle to deadlocks. Learn the concepts of files, protection and security. 									
Cours	Linderste	nd the basic co	siul co	mpletto related	n of tr	ns course,	the students will	I be able	to	
	Understa	nu the basic co	ncepts	Telateu	to the	operating s	systems.			
CO 2	Analyze mechanis	the various pro	cess sc	hedulin	g algoi	rithms and	process synchror	nization		
CO 3	Analyze	the various me	mory n	nanagen	nent sc	hemes.				
CO 4	Understa system.	nd the ways to	deal th	e deadl	ocks ai	nd the basi	c concepts related	l to files ir	n the	
CO 5	Analyze	the protection a	and sec	urity m	echanis	sms				

<u>UNIT - I</u>

Operating Systems Basics: Operating systems functions, Overview of computer operating systems, distributed systems, operating system services and systems calls, system programs, operating system structure.

<u>UNIT - II</u>

Process Management: Process concepts, scheduling-criteria, algorithms, their evaluation.

Concurrency: Process synchronization, the critical-section problem, Peterson's Solution, semaphores, monitors.

UNIT-III

Memory Management: Swapping, contiguous memory allocation, paging, structure of the page table, segmentation, virtual memory, demand paging, page-replacement algorithms, Allocation of frames.

UNIT-IV

Deadlocks: system model, deadlock characterization, deadlock prevention, detection and avoidance, recovery form deadlock.

Files: The concept of a file, Access Methods, Directory structure, File system mounting.

UNIT-V

Protection: Protection, Goals of Protection, Domain of protection,

Access Matrix, Implementation of Access Matrix.

Security: Security problems, User authentication.

Text Books:

- 1. Abraham Silberchatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts", Eighth edition, John Wiley.
- 2. Andrew S Tanenbaum, "Modern Operating Systems", Fourth Edition, Pearson Education
- 3. William Stallings, "Operating Systems: Internals and Design Principles", Sixth Edition2009, Pearson Education.
- 4. D.M.Dhamdhere, "Operating Systems, A Concept based Approach", Third Edition, TMH

Reference Books:

- 1. A.S.Godbole, "Operating Systems", Second Edition, TMH.
- 2. Operating Systems: A Spiral Approach Elmasri, Carrick, Levine, TMH Edition.
- 3. Operating Systems H.M. Deitel, P. J. Deitel, D. R. Choffnes, 3rd Edition, Pearson.

4. Operating Systems: A Practical Approach, Rajiv Chopra, 4th Edition, S Chand Publishers.

Course Title	•	(0	R F Open I	Progra Electiv	mming e Cours	e - III)	B.Tech VII Sem (R20) CSE			
Course Code	ļ	Category	Hours/Week			Credi ts	Maximum Marks			
2001	200E506 OE C	OE C	L T P	С	Continuous Internal Assessme nt	End Exams	Tot al			
		U	3	0	0	3	40	6 0	100	
End Exam Duration: 3Hrs										
Course (Objecti	ves:								
• O _l	otimize	business decisi	ions a	nd crea	ate comp	etitive advar	ntage with Big d	lata analyt	ics.	
• Pr	actice ja	ava concepts re	quired	d for de	evelopin	g map reduc	e programs.			
• In	part the	e architectural o	concep	ots of I	Hadoop a	and introduc	ing map reduce	paradigm.		
• Pr	actice p	rogramming to	ols Pl	G and	HIVE in	n Hadoop ec	cosystem.			
• In	plemer	it best practices	s for H	ladoop	develop	oment.				
Course (Outcom	es: On succes	sful c	omplet	tion of t	his course, t	he students wi	ll be able t	to	
CO 1	Under	stand the instal	lation	of VM	IW is an	d PIG.				
CO 2	Under	stand and apply	y the s	etting	up and I	nstalling Ha	doop in its three	operating	modes.	
CO 3	Implei	ment the file m	anage	ment ta	asks in H	Iadoop.				

CO 4 Understand Map Reduce Paradigm.

CO 5 Understand Pig Latin scripts sort, group, join, project, and filter your data.

<u>UNIT-I</u>

Introduction to R:What is R? – Why R? – Advantages of R over Other Programming Languages - R Studio: R command Prompt, R script file, comments – Handling Packages in R: Installing a R Package, Few commands to get started: installed.packages(), packageDescription(), help(), find.package(), library() - Input and Output – Entering Data from keyboard – Printing fewer digits or more digits – Special Values functions : NA, Inf and–inf.

<u>UNIT-II</u>

R Data Types: Vectors, Lists, Matrices, Arrays, Factors, Data Frame – **R - Variables**: Variable assignment, Data types of Variable, Finding Variable ls(), Deleting Variables - **R Operators**: Arithmetic Operators, Relational Operators, Logical Operator, Assignment Operators, Miscellaneous Operators - **R Decision Making**: if statement, if – else statement, if– else if statement, switch statement – **R Loops**: repeat loop, while loop, for loop - Loop control statement: break statement, next statement.

<u>UNIT-III</u>

R-Function : function definition, Built in functions: mean(), paste(), sum(), min(), max(), seq(), userdefined function, calling a function, calling a function without an argument, calling a function with argument values - **R-Strings** – Manipulating Text in Data: substr(), strsplit(), paste(), grep(), toupper(), tolower() - **R Vectors** – Sequence vector, rep function, vector access, vector names, vector math, vector recycling, vector element sorting - **R List** - Creating a List, List Tags and Values, Add/Delete Element to or from a List, Size of List, Merging Lists, Converting List to Vector - **R Matrices** – Accessing Elements of a Matrix, Matrix Computations: Addition, subtraction, Multiplication and Division- **R Arrays:** Naming Columns and Rows, Accessing Array Elements, Manipulating Array Elements, Calculation Across Array Elements - **R Factors** –creating factors, generating factor levels gl().

UNIT-IV

Data Frames –Create Data Frame, Data Frame Access, Understanding Data in Data Frames: dim(), nrow(), ncol(), str(), Summary(), names(), head(), tail(), edit() functions - Extract Data from Data Frame, **Expand Data Frame**: Add Column, Add Row - Joining columns and rows in a Data frame rbind() and cbind() – Merging Data frames merge() – Melting and Casting data melt(), cast().

Loading and handling Data in R: Getting and Setting the Working Directory – getwd(), setwd(), dir() - R-CSV Files - Input as a CSV file, Reading a CSV File, Analyzing the CSV File: summary(), min(), max(), range(), mean(), median(), apply() - Writing into a CSV File – R -Excel File – Reading the Excel file.

UNIT-V

Descriptive Statistics: Data Range, Frequencies, Mode, Mean and Median: Mean Applying Trim Option, Applying NA Option, Median - Mode - **Standard Deviation – Correlation - Spotting Problems in Data with Visualization:** visually Checking Distributions for a single Variable - **R** – **Pie Charts**: Pie Chart title and Colors – Slice Percentages and Chart Legend, 3D Pie Chart – **R Histograms** – Density Plot - **R** – **Bar Charts**: Bar Chart Labels, Title and Colors.

Text Books:

- 1. ROBERT I. KABACOFF "R in Action Data analysis and graphics with R" Manning Publications Co 2011.
- 2. Seema Acharya, Data Analytics using R, McGrawHill Education (India), 2018, ISBN: 978-93-5260-524-8.

- 3. Tutorials Point (I) simply easy learning, Online Tutorial Library (2018), *R Programming*, Retrieved from https://www.tutorialspoint.com/r/r_tutorial.pdf.
- 4. Andrie de Vries, Joris Meys, R for Dummies A Wiley Brand, 2nd Edition, John Wiley and Sons, Inc, 2015, ISBN: 978-1-119-05580-8.

Course Title	e CY (Oper	YBER n Elect	SEC	URIT ourse –	Y · III)	B.Tech. VII Sem (R20UG) AI&ML				
Course Cod	e Category	Hou	ırs / W	Veek	Credits	Maximum Mar	ks			
200E3905	PEC	L	Т	Р	С	Continuous Internal Assessment	EndExam	Total		
		3	0	0	3	40	60	100		
Mid Ex	Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs									
 Course Objectives: To learn about cybercrimes and how they are planned To learn the vulnerabilities of mobile and wireless devices The learner will gain knowledge about securing both clean and corrupted systems, protect personal data, and secure computer networks 										
Course Outo	omes: On su	cessf	ul com	pletio	on of this c	ourse, the students will	be able to			
CO1 U1	derstanding t	he bas	ic cyb	er secu	urity conce	pts				
CO 2 Cl	assifying the i	nterna	tional	laws a	und cyber fo	orensics				
CO3 Re	membering to	cyber	r-crim	e.						
CO4 Re	cognizing cyt	percrir	ne and	l cyber	terrorism.					
CO 5 Ui	derstanding t	he priv	acy is	sues.						

<u>UNIT - I</u>

Introduction to Cyber Security: Basic Cyber Security Concepts, layers of security, Vulnerability, threat, Harmful acts, Internet Governance – Challenges and Constraints, Computer Criminals, CIA Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, hardware attacks, Spectrum of attacks, Taxonomy of various attacks, IP spoofing, Methods of defense, Security Models, risk management, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, etc.,Comprehensive Cyber Security Policy.

UNIT - II

Cyberspace and the Law & Cyber Forensics: Introduction, Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy. Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics, Special Techniques for Forensics Auditing.

<u>UNIT - III</u>

Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

<u>UNIT-IV</u>

Cyber Security: Organizational Implications: Introduction, cost of cybercrimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and

perils for organizations, social computing and the associated challenges for organizations.

Cybercrime and Cyber terrorism: Introduction, intellectual property in the cyberspace, the ethical dimension of cybercrimes the psychology, mindset and skills of hackers and other cyber criminals.

<u>UNIT - V</u>

Privacy Issues: Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, Data linking and profiling, privacy policies and their specifications, privacy policy languages, privacy in different domains medical, financial, etc.

Text Books:

1. Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley

2. B. B. Gupta, D. P. Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335, 2018.

3. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.

4. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J. David Irwin, CRCPressT&F Group.

Reference Books:

1. Cyber Security Engineering: A Practical Approach for Systems and Software Assurance, Nancy R.Meade, Carol C. Woody, Addison Wesley.

2. The Cyber Security: Self help Guide, Arun Soni, CRC Press.

3. Cyber Security: Analytics, Technology & Automation, Martti Lehto, Pekka Neittaanmaki, Springer.

4. Cyber Security: Essentials, Charles J. Brooks, Christopher Grow, Philip Craig, Donald Short, SYBEX.

Course Title	JAVA (Open	A PRO Electi	GRA	MMII urse –	NG III)	G B.Tech. VII Sem (R20UG) AI&M				
Course Code	Category	Hou	irs / W	Veek	Credits	Maximum Marks				
20OE3906	OEC	L	Т	Р	С	ContinuousInternal Assessment	End Exams	Total		
		3	0	0	3	40	60	100		
Mid Exa	m Duration	: 90 M	linutes	5	End Exam Duration: 3 Hrs					

Course Objectives:

- To give the students a firm foundation on Java concepts like Primitive data types, Java control flow, Methods, Object-oriented programming, Core Java classes, packages and interfaces, multithreading.
- To provide the students with an understanding of Java applets, Abstract Window, Toolkit and exception handling.

Course (Course Outcomes: On successful completion of this course, the students will be able to									
CO 1	Solve problems using object oriented approach and implement them using Java									
CO 2	Apply the concept of inheritance, polymorphism and Packages, Interfaces									
CO 3	Implement Exception handling and able to develop multithreaded applications with synchronization.									
CO 4	Able to develop applets for web applications.									
CO 5	Able to design GUI based applications.									

UNIT – I

Object Oriented Programming basics: Need for OOP paradigm, Principles of OOP concepts.

Java Basics: History of Java, Java buzzwords, Simple java program, classes and objects – concepts of classes, objects, constructors, methods, Introducing access control, **this** keyword, overloading methods and constructors.

UNIT – II

Inheritance: Inheritance basics, Types of Inheritance, benefits of inheritance, **super** uses, using **final** with inheritance, polymorphism- method overriding, abstract classes.

Packages and Interfaces: Defining, Creating and Accessing a Package, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces.

<u>UNIT – III</u>

Exception handling and multithreading: Concepts of exception handling, exception hierarchy, usage of try, catch, throw, throws and finally, creating own exception sub classes. Differences between multi threading and multitasking, thread life cycle, creating threads, synchronizing threads.

<u>UNIT – IV</u>

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling Mouse and Keyboard events, Adapter classes, The AWT class hierarchy, user interface components- Labels, Button, Scrollbars, Text Components, Check box, Choices,

UNIT – V

Applets: Concepts of Applets, differences between applets and applications, life cycle of an Applet, creating applets, passing parameters to applets.

Text Books:

- 1. Java; the complete reference, 7th editon, Herbert schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson Education.
- **3.** Core Java 2, Vol 1, Fundamentals, Cay.S.Horstmann and Gary Cornell, eighth Edition, Pearson Education.
- **4.** Core Java 2, Vol 2, Advanced Features, Cay.S.Horstmann and Gary Cornell, eighth Edition, Pearson Education.

Reference Books:

- 1. An Introduction to programming and OO design using Java, J.Nino and F.A.Hosch, John wiley & sons.
- **2.** An introduction to Java programming and object oriented application development, R.A. Johnson-Thomson.
- 3. Object Oriented Programming through Java, P. Radha Krishna, University Press.

Course	Fitle	Tran	sform	s and	OPEN FLECTIVE-III					
Course	liue		Appli	catio	ns					
Course (Code	Category	Hou	rs/Wee	ek	Credits	Maximum Marks			
20OE6	512	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3			3	40	60	100	
Mid Exa	m Du	ration: 90 mi	n		End Exam Du	ration: 3H	rs			
Course Objectives:										
Т	To enable the students to apply the knowledge of mathematics in various engineering fields by									
making th	em to l	earn the follow	ring:							
	•	• Laplace Tr	ansforms	s is use	d for	making pre	dictions and mak	ing analysis	s in data	
		mining.			_					
	•	 Laplace training 	nsforms i	n engine	eering	problems.				
		 Understand 	Fourier'	Transfor	rms an	d apply then	n in solving proble	ms.		
		 Inculcate th 	le concep	t of Z-T	ransfo	rms and its a	applications.			
Course O)utcom	es: On success	ful compl	letion of	this c	ourse, the stu	udents will be able	to		
CO 1	Under	stand Laplace	Transfor	ms in er	ngineer	ring problem	IS.			
CO 2	Apply	Laplace Trans	forms in	enginee	ring pr	oblems.				
CO 3	Under	stand Fourier	Transform	ns in en	gineer	ing problem	s.			
CO 4	Apply	Fourier Transf	forms in e	engineer	ing pr	oblems.				
CO 5	Under	stand concept	of Z-Tra	nsforms	and it	s application	IS.			

UNIT I:

Laplace transforms of standard functions – Properties of Laplace Transforms - Transforms of derivatives and integrals- Evaluation of integrals by Laplace transforms – Unit step function – Second shifting theorem – Dirac's delta function. Laplace transforms of periodic functions.

Learning Outcomes:

At the end of this unit, the student will be able to

• Understand Laplace Transforms in engineering problems.

UNIT II:

Inverse Laplace Transforms. Convolution theorem – Applications of Laplace transforms to ordinary differential equations.

Learning Outcomes:

At the end of this unit, the student will be able to

• Apply Laplace Transforms in engineering problems.

UNIT III:

Fourier integral theorem (only statement) – Fourier sine and cosine integrals. Fourier transform – Fourier sine and cosine transforms – Properties of Fourier transform.

Learning Outcomes:

At the end of this unit, the student will be able to

• Understand Fourier Transforms in engineering problems.

UNIT: IV:

Inverse transforms – Convolution theorem of Fourier transform- Parseval's identity for Fourier transforms- Relation between Fourier and Laplace transforms. Fourier transforms of the derivatives of a Function. Applications of transforms of boundary value problems (Only Heat Conduction).

Learning Outcomes:

At the end of this unit, the student will be able to

• Apply Fourier Transforms in engineering problems.

UNIT V

z-transform – Inverse z-transform – Properties – Damping rule – Shifting rule – Initial and final value theorems. Convolution theorem – Solution of difference equations by z-transforms.

Learning Outcomes:

At the end of this unit, the student will be able to

• Understand concept of Z-Transforms and its applications.

Text Books:

- 5. Higher Engineering Mathematics, Dr. B.S. Grewal, Khanna Publishers-43 edition 2014.
- 6. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Publications, 9th edition-2013.
- 7. Engineering Mathematics Volume-1, Dr. D.S Chandra Sekharaiah, Prism Books Pvt. Ltd.
- 8. Engineering Mathematics by Srimanta Pal, Subodh C. Bhunia, Oxford University Press.

Reference Books:

- 5. Higher Engineering Mathematics, B.V. Ramana, Mc. Graw Hill Education (India) Pvt. Ltd, New Delhi, 11th Edition, Reprint 2010.
- 6. A Text Book of Engineering Mathematics, N.P. Bali and Manish Goyal, Lakshmi Publications, Reprint 2008.
- 7. Advanced Engineering Mathematics, Greenberg Michael D, Cengage Publishers.
- 8. Introduction to Laplace Transforms and Fourier Series, Philip Dyke, Springer.

Course Title	PHYSICS	OF REN	IEWAB	ERGY	OPEN]	ELECTIVE	-3	
Course Code	Category	Но	ours/We	ek	Credits	Maximum Marks		
200E613	BSC	L	Т	Р	С	Continuous Internal Assessment	End lab Exams	Total
		3	0	0	3	40	60	100
			End Exam Duration: 3Hrs					

COURSE OBJECTIVES:

1. A top priority for developing renewable energy in India is to boost the economy,

encourage the development of energy security, and reduce carbon emissions.

2. Promote sustainable development and promote economic integration.

3. Ensure that any energy sector products that come into use do so with minimal impact on the environment.

4. Take every step to ensure that energy generation, conversion, and use are cost-competitive. **COURSE OUTCOMES:** Upon completion of the course, the student will be able to:

CO1	Understand the energy resources.
CO2	Apply the Solar energy.
CO3	Idealized wind turbine
CO4	Underground heat – Micro hydro plants.
CO5	Classify the different types of energy resources.

UNIT I: Bio diversity conception individuals

Introduction to renewable energy–Biogas cogeneration – Wood as a source of energy – Energy crops – Bio diesel – Fuel from plantation – Ethanol – Synthesis fuels.

UNIT II: Solar energy

Solar thermal: Solar collectors – Hot water from Sun – Cooling with the Sun – Solar drying – Air collectors – Solar thermal power plants.

Solar electric: Photo voltaic effect – The heart of a PV array – The solar cell – Solar energy as part of sustainable development.

UNIT III: Wind Energy

Power in the wind: Aerodynamics principles of wind turbines – Power available in the wind – Rotor efficiency – Factors affecting wind power – Impact of tower height – Wind turbines sitting – Idealized wind turbine – Power curve – Speed control for maximum power.

UNIT IV: Hydro-Energy

Introduction -Water power – Ocean wave and tidal energies – Hydro power nature conservation – Underground heat – Micro hydro plants.

UNIT V: Geothermal Energy

Introduction-Geothermal Resource -Mining Thermal Energy From a Hot Dry Rock-Geothermal Heat Pumps-Active Volcanoes, Plate Tectonics, and the "Ring of Fire".

Text books:

- 1. Hand book of renewable energy technology -A.F.Zobba and R.Bansal, World scientific publications.
- 2. Renewable energy: The facts Dieter Scirfried and Walter Witzel. Earth scan publications for sustainable future.

Reference books:

3. http://www.law.du.edu/index.php/the-renewable-energy-reader/6-geothermal

Cours	e Title		Fuol 7	Fechnol		B	Tech.	II)		
Cours	o Codo	Catagory	Fuel I		olz	Cradita	(Open elective-III) Maximum Marks			
Cours	eCoue	Category	п	ours/we	ek 🗌	Creats	Continuous			
200	E614	Open Elective	L	Т	Р	С	Internal Assessment	End Exams	Total	
			3	0	0	3	40	60	100	
Mid Exa	Mid Exam Duration: 90 Min End Exam Duration: 3Hrs									
Course	Objective	s:								
• 1	The studer	nts will have	the ger	ieral kn	owledg	e of Fuels	in the context	of clean	power,	
S	ustainabi	lity and alte	native	fuels						
• 1	To build u	p knowledge	e of con	cepts an	id theoi	ies of fuel	combustion 8	& control	process	
Course	Outcomes	: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to		
CO 1	Recall th	e Characteris	tics & p	oropertie	s of a fu	ıel.				
CO 2	Analyze	the concepts	of solid	fuels ar	nd evalu	ate the cal	orific value of	solid fuel	s by	
	Bomb Ca	alorimeter.								
CO 3	Explore	the synthesis	of syntl	netic pet	rol & p	rocess of F	Refining of petr	oleum.		
CO 4	Identify	various gase	ous fuels	s and ex	plain th	eir prepara	tion and prope	rties.		
CO 5	Discuss a fuels	about the pur	pose of	different	t alterna	tive fuels,	merits & deme	erits of alt	ernative	

UNIT-I-Introduction

Fuels-Introduction, Classification of Fuels, Differences between Solid, Liquid & gaseous fuels. Characteristics of a Good fuel, Calorific Value of Fuels-Gross calorific value(GCV) & Net calorific Value (NCV)- definition, units & their relation, Numerical problems on calorific value.

Learning Outcomes:

At the end of the unit, The students will be able to

- Classification of fuels
- Analyze the characteristics of a good fuel

UNIT-2-Solid Fuels

Introduction, Types of Coal, Coal formation, Properties, Advantage & disadvantages of solid fuels. Proximate & Ultimate analysis of coal. Manufacture of metallurgical Coke-Otto Hoffmann method, Determination of Calorific value of solid fuel by Bomb calorimeter,

Learning Outcomes:

At the end of the unit, The students will be able to

- Explain the advantages and disadvantages of solid fuel
- Determine the calorific value of fuel by Bomb Calorimeter

UNIT-3-Liquid Fuels

Introduction, Properties, Advantages & disadvantages of Liquid fuels, Classification of petroleum, refining of petroleum-Fractional distillation of crude oil, uses of various petroleum products, Synthetic Petrol- methods-Fischer-Tropsch method and Bergius process. Knocking-Octane number, Cetane Number-Definitions

Learning Outcomes:

At the end of the unit, The students will be able to

- Explain the advantages and disadvantages of Liquid fuel.
- Discuss about refining of petroleum and uses of various petroleum products.

UNIT-4-Gaseous Fuels

Introduction, Properties, Advantages & disadvantages Of Gaseous fuels - Preparation, properties & uses of Natural gas, producer gas, water gas, Propane. Determination of calorific value of gaseous fuels by Junker's Gas Calorimeter-Principle & applications.

Learning Outcomes:

At the end of the unit, The students will be able to

- Explain the advantages and disadvantages of Gaseous fuel.
- Preparation and properties of different types of gaseous fuels

Unit-5-Need for Alternate Fuels

Need for alternate fuels- Effects of Exhaust gas emissions on environment & Humans (NO, NO₂, CO₂, CO, SO_X). Introduction to alternate fuels- General uses of alternate fuels like Hydrogen, LPG, CNG, Biogas, Methanol, Ethanol, Butanol. Biofuels-Types of Biofuels, Applications of Biofuels, Merits & demerits of alternate fuels.

Learning Outcomes:

At the end of the unit, The students will be able to

- Know about the effects of exhaust gas emissions on environment and humans.
- Analyze the merits and demerits of alternate fuels

Textbooks:

- 1. Text Book of Engineering Chemistry, Shashi Chawla, Dhanapath Rai Publications, New Delhi, 4th Edition, 2011.
- 2. Internal Combustion Engine Fundamentals, Heywood John B, Pragnya IAS Publications
- 3. General Chemistry for Engineers, Jeffrey S. Gaffrey & Nancy A. Marky
- 4. Fuels & Fuel- Additives, S.P.Srivastava , Jeno Hancsok, Willey Publications

REFERENCES:

1.A Text Book of Engineering Chemistry, Jain and Jain, Dhanapath Rai Publishing Company, New Delhi, 15th Edition, 2010.

2. Alternative Liquid fuels, Desai Ashok V, Willey Publications

3. Introduction to Combustion, Turns Stephen R, Mc GrawHill Publications

4. Fuels and Fuels Technology, Wilfrid Francis, Martin C. Peters, 2nd edition, Elsevier publications

Course Title	PROFESS	IONAL	COM	MUNI	CATION	OPEN ELECTIVE – III			
Course Code	Category	Ηοι	Hours/Week Credits Maximum Mark				5		
20OE615	HUM	L	T	Р	С	Continuous Internal Assessment	End Exams	Total	
		3			3	40	60	100	
Mid Exam Duration: 90 Min					End Exam Duration: 3Hours				

Objectives:

- > To help the students get on in their professions and get success professionally.
- > To help the students learn communication techniques.
- To make the students thorough with presentation skills to become effective participants in various discussions.

Course	Outcomes: On successful completion of this course, the students will be able to
CO 1	The students will be able to understand the processes of communication and apply
	communication techniques for effective communication.
CO 2	The students will be able to improve group behaviour and participate effectively in the
	team work thereby improving professional prospects.
CO 3	The students will be able to present effectively orally and in writing

Syllabus

Unit :1

1. Professional Communication

Role of Professional Communication- Professional Communication Skills- Tips to improve professional communication skills.

Unit 2

Technical Communication

Significance of technical communication- Use of vocabulary in formal letters / reports and e-mails.- Compound words , misspelled words, using of similar words to express the idea, analogies. Grammar: Subject - Verb agreement, Active and Passive voice, Embedded sentences, clauses and conditionals.

Unit 3

Reading Comprehension

Comprehension - Reading comprehension techniques-Styles, speed and evaluation of Reading - critical reading- Paraphrasing / summarizing: SQ3R method, PQRST method

Unit 4

Oral Presentation

Oral Presentation techniques- Public speaking - guidelines for presentation- tone and voice

modulation- Use of visuals in presentation- Group Discussion - strategies

Unit 5

Writing Skills

Writing - formal and informal writing - formal and informal letters - formal and informal reports- Common errors in writing, elements of styles- Analytical and issued based essays.

Reference Books

 Ashraf Rizvi, "Effective Technical Communication", 2nd Edition, McGraw Hill Education, 2017.

- 2. Raman Sharma, "Technical Communications", Oxford Publication, London, 2004.
- Meenakshi Raman and Sangeetha Sharma, "Technical Communication: Principles Practice", 2ndEdition, Oxford University Press, 2011

4. English for Engineers and Technologists (Combined edition, Vol. 1 and 2), Orient Black swan 2010.

5. Stephen E. Lucas, "The Art of Public Speaking", 10th Edition; McGraw Hill Education, 2012.

6. William Strunk Jr. & E.B. White, "The Elements of Style", 4th Edition, Pearson, 1999.

7. David F. Beer and David McMurrey, Guide to writing as an Engineer, John Willey. New York, 2004.

8. Goodheart-Willcox, "Professional Communication", First Edition, 2017.

9. Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India, 6 edition, 2015.

10. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1edition, 2013.

Course Title	Digital & S	Social 1	Media	Man	B. Tech. Open Elective - III				
Course Code	Category	Hours/Week			Credits	Maxin	num Marl	ks	
200E616	Open Elective (OEC)	L	Т	Р	C	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
I	Mid Exam I	Duratio	on: 90 I	End Exam Duration : 3Hrs					

Course Objectives: The objective of the course is

- Review key trends within the Digital Marketing landscape. Examine an example of each Digital Marketing channel.
- Examine SEO's Position as a Fundamental Building Block for Online Marketing
- Identify and appropriately apply Fundamental Factors That Result in Achieving Top Search Engine Rankings.
- Develop an email and sending strategy that adheres to email compliance best practices. Analyze the role that social marketing plays in the digital landscape and marketing mix.
- Identify and incorporate individual social and mobile platforms into a digital marketing strategy. Utilize Google Analytics to examine the role that web analytics play in digital marketing

Course Ou	itcomes: On successful completion of this course, the students will be able to
CO 1	Explain the role and importance of digital marketing, Ability to comprehend how digital media can be used for current marketing practices.
CO 2	Understanding of Search Engine optimization, Pay per click and Email marketing,
CO 3	Analyze the role that social media marketing plays in the digital landscape and marketing mix.
CO 4	Identify and incorporate individual social and mobile media platforms into a digital marketing strategy.
CO 5	Understanding of content creation, content marketing channels, writing messages and content marketing plan, Utilize Google Analytics to examine the role that web analytics play in digital marketing.

Unit I

Introduction to Digital Marketing: Introduction to marketing in the digital environment, Online marketplace analysis: micro-environment - The Internet macro-environment, What Are the 3i Principles? **Digital Marketing Strategy:** Content Marketing - Online Offer - Online Space / website Selling - Online Value - Internet for Distribution.

Search Engine Marketing: Search Engine Optimization, Pay Per Click, Digital Display Advertising, Introduction to page rankings, Email Marketing.

Unit III

Social Media Marketing: Social Media, Social Media Mining, Content guidelines for online communications, Social Media Channels and Social Media Strategy. Cyber crime and security.

Unit IV

Mobile Marketing: Mobile Marketing Fundamentals, Mobile consumers, Digital consumption, M-commerce, Technological change and marketing, Overview of mobile and app based marketing, Mobile websites, Conducting Mobile Audits, Strategic objectives.

Unit V

Facebook for Business: Facebook for Business-Facebook fan Engagement, Anatomy of Ad Campaign, Adverts Types of adverts, Adverts Targeting. Case Study-Tata DoCoMo

Text Books

1. Digital Marketing: by Raghavendra K & ShrutiPrabhakar, HPH

References

- 1. e Marketing: The Essential Guide to Digital Marketing: by Rob Stokes (2010), Quirk Education.
- 2. The Art of Digital Marketing: by Ian Dodson, Wiley.
- 3. Social Media Marketing: Strategies for Engaging in Facebook, Twitter & Other Social Media: by Liana Evans, Que Publishing
- 4. E-Marketing: by Strauss, J. and Frost, R., Pearson Education, Inc

Course Title	Basic	cs of F	Power	Elect	ronics	B. Tech. EEE Open Elective - IV			
Course Code	Category	Но	urs/W	'eek	Credits	Maximum Marks			
200E207	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(OEC)	3	0	0	3	40	60	100	
Μ	lid Exam Du	ratio	n: 1H	End Exam Duration 3Hrs					

Course Objectives: The objective of the course is to learn basic fundamentals of power electronics devices and to classify the different kinds of power electronics circuits as a function of the input source and loads.

Course Outcomes: On successful completion of this course, the students will be able to,

CO 1	To understand the characteristics of different power switches.										
CO 2	To understand the single phase and three phase controlled rectifier with different loads										
CO 3	To understand the operating principle of cyclo converters, choppers and inverters										
CO 4	To understand harmonic content in output voltage and current waveforms of an inverter.										

<u>UNIT - I</u>

Fundamentals of Power Semi-conductor devices: SCR – static characteristics –turn on and off mechanism – MOSFET, IGBT, GTO Characteristics.

<u>UNIT - II</u>

Phase controlled Rectifiers(AC to DC): Phase controlled rectifiers – single phase half and fully controlled converters – midpoint and bridge connections with R and RL loads – effect of source inductance- three phase half controlled converters with R load .

<u>UNIT - III</u>

AC Voltage Controllers (AC to AC): AC voltage controllers- single phase ac voltage controllers with SCR for R and RL load – cyclo converters – single phase cyclo converters (mid-point configuration) with R load.

UNIT - IV

Choppers (**DC to DC**): Choppers – principle of operation – control strategies- types of chopper circuits – type A, type B- buck -boost converter.

UNIT - V

Inverters (**DC to AC**): Inverters – single phase half bridge and full bridge inverters with R and RL load –output voltage control techniques - PWM techniques- harmonic reduction techniques.

<u>Text Books</u>

- 1. Power Electronics M.D Singh & K.B. Kanchandhani, TMH publications, 1998.
- 2. Power Electronics Circuits, Devices and Applications –M.H. Rashid, Prentice Hall of India, 2nd Edition 1998.

Reference Books

- 1. Power Electronics- P.S. Bimbhra, Khanna Publications.
- 2. Power Electronics Vedam Subramanyam, New Age Information Limited, 3rd Edition.
- 3. Power Electronics –V.R. Murthy, Oxford University Press, 1st Edition 2005.
- 4. Power Electronics P.C Sen, Tata Mc Graw Hill Publishing.

Course Title	System	Relia	bility	y Coi	ncepts	B. Tech. E Open Electiv	CEE 7e - IV	
Course Code	Category	Hours/Week		Credits	Maximum Marks			
200E208	Open Elective	L	Т	Р	С	Continuous Internal Assessment	Internal nentEnd Exam60	Total
	(OEC)	3	1	0	3	40		100
Mid Exam Duration: 1Hr30M						End Exam Duration: 3Hrs		

Course Objectives: The objective of the course is to learn basic probability theory, network modeling, time dependent probability, markov modeling and system reliability evaluation.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Understand the concept of basic probability theory, binomial distribution, network reliability, reliability functions, time dependent probability, markov chains & process and system reliability
CO 2	Apply probability rules to find probability distributions, network reliability for series, parallel, series-parallel, complex networks
CO 3	Analyze the failure rate distributions, bath-tub curve, STPM, continuous markov process and frequency duration techniques for single and two repairable components
CO 4	Evaluate transitional rates, cumulative probability and frequency n-component repairable models

<u>UNIT-I</u>

Basic Probability Theory: Basic concepts – Rules for combining Probabilities of events – Failure Density and Distribution functions – Bernoulli's trials – Binomial distribution – Expected value and standard deviation for binomial distribution – Examples.

<u>UNIT-II</u>

Network Modeling and Reliability Evaluation: Basic concepts – Evaluation of network Reliability / Unreliability – Series systems, Parallel systems, Series - Parallel systems, partially redundant systems – Types of redundancies - Evaluation of network Reliability / Unreliability using conditional probability method – Paths based and Cut set based approach – Examples.

UNIT-III

Time Dependent Probability: Basic concepts – Reliability functions f(t), F(t), R(t), h(t) – Relationship between these functions – Bath tub curve – Expected value and standard deviation of Exponential distribution – Measures of reliability – MTTF, MTTR, MTBF – Evaluation of network reliability / Unreliability of simple Series, Parallel – Examples.

UNIT-IV

Discrete Markov Chains: Basic concepts – Stochastic transitional Probability matrix (STPM) – Limiting State Probability evaluation – Absorbing states.

Continuous Markov Processes: Modeling concepts – State space diagrams – time dependent reliability evaluation of single component repairable model – Evaluation of Limiting State Probabilities of one, two component repairable models – Frequency and duration concepts – Frequency balance approach.

UNIT-V

Multi Component & Approximate System Reliability Evaluation: Recursive relation for evaluation of equivalent transitional rates, cumulative probability and cumulative frequency and 'n' component repairable model - Series systems, Parallel systems, Basic reliability indices – Cut-set approach – Examples.

Text Books

- 1. Reliability Evaluation of Engineering Systems by Roy Billinton and Ronald N. Allan, Reprinted in India B. S. Publications, 2007.
- 2. System Reliability Concepts by V. Sankar, Himalaya Publishing House, 2015.

Reference Books

- 1. Reliability Engineering by E. Balagurusamy, Tata McGraw Hill, 2003.
- 2. Reliability and Maintainability Engineering by Charles E. Ebeling, Tata McGraw Hill, 2000.

Course	Title	Energy Auc	liting			B.Tech ME V	B.Tech ME VII Sem			
Course	Code	Category	Hours/Week			Credits	Maximum Ma	Maximum Marks		
200E31	4	OEC- IV	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
			3	0	0	3	40	60	100	
Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs										
Course	Objectiv	ves:								
	• In	troduce the co	ncepts o	of energy	y scenai	rio and need	for energy policy	for industr	ies in	
	In	dia.								
	• Fa	miliarize with	the Ene	ergy Au	dit conc	epts and its a	approaches.			
	-									
	• Te	each the princi	ples and	l objecti	ves of t	he Energy m	anagement.			
	- D			1 171 4 1			4			
	• Di	iscuss the Thei	mai and	1 Electri	ical Ene	rgy manager	nent.			
Course	Outcom	es: On success	ful com	nletion	of this of	course the st	udents will be abl	e to		
	E		-1					0.00		
COT	Explain	the fundament	al aspec	ts of en	ergy sce	enario in Indi	а.			
CO 2	List the	various nation	al and st	tate leve	el energy	y policy.				
CO 3	Explain	the concepts o	f energy	y conser	vation i	n boilers.				
CO 4	Identify	the thermal en	ergy co	mponen	ts.					

CO 5 Explain the concepts of supply side methods to minimize supply.

<u>UNIT – I</u>

General Aspects

Review of energy scenario in India, General Philosophy and need of Energy Audit and Management, Basic elements and measurements - Mass and energy balances – Scope of energy auditing industries - Evaluation of energy conserving opportUNITies, Energy performance contracts, Fuel and Energy substitution, Need for Energy Policy for Industries, National & State level energy Policies.

<u>UNIT-II</u>

Energy Audit Concepts

Need of Energy audit - Types of energy audit – Energy management (audit) approach understanding energy costs - Bench marking – Energy performance - Matching energy use to requirement - Maximizing system efficiencies -Optimizing the input energy requirements -Duties and responsibilities of energy auditors- Energy audit instruments - Procedures and Techniques.

<u>UNIT – III</u>

Principles and Objectives of Energy Management

Design of Energy Management Programmes - Development of energy management systems – Importance - Indian need of Energy Management - Duties of Energy Manager - Preparation and presentation of energy audit reports - Monitoring and targeting, some case study and potential energy savings.

UNIT - IV

Thermal Energy Management

Energy conservation in boilers - steam turbines and industrial heating systems - Application of FBC - Cogeneration and waste heat recovery -Thermal insulation - Heat exchangers and

heat pumps -HVC industries-Building Energy Management.

<u>UNIT - V</u>

Electrical Energy Management

Supply side Methods to minimize supply-demand gap- Renovation and modernization of power plants - Reactive power management – HVDC- FACTS - Demand side - Conservation in motors - Pumps and fan systems – Energy efficient motors.

Text Books:

1. Murphy, W. R., Energy Management, Elsevier, 2007.

- 2. Smith, C. B., Energy Management Principles, Pergamum, 2007
- 3. Handbook of Energy Audit, Sonal Desai, Mcgraw Hill Education Private Ltd

Reference Books:

1. Turner, W. C., Doty, S. and Truner, W. C., Energy Management Hand book, 7th edition, Fairmont Press, 2009.

2. De, B. K., Energy Management audit & Conservation, 2nd Edition, Vrinda Publication, 2010.

3. Energy Management Handbook – W.C. Turner (John Wiley and Sons, A Wiley a. Interscience publication)

4. Industrial Energy Management and Utilisation –L.C. Witte, P.S. Schmidt, D.R. Brown (Hemisphere Publication, Washington, 1988)

5. Industrial Energy Conservation Manuals, MIT Press, Mass, 1982

6. Energy Conservation guide book Patrick/Patrick/Fardo (Prentice hall1993)

Course Ti	tle	Sustainable	Enginee	ring		B.Tech ME VI	Sem		
Course Co	ode	Category	Hours	/Week		Credits	Maximum Mar	ks	
200E315		OEC- IV	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0	0	3	40	60	100
Mid Exan	n Durat	tion: 90 Minut	tes		•	End Exan	n Duration: 3Hrs		
Course Ol	bjective	es:				·			
• To have an increased awareness among students on Issues in areas of sustainability.									
	• To understand the role of Engineering and technology within sustainable development								
	• To	know the Met	hods ,too	ols and i	ncentiv	es for sustain	nable product serv	vice system	ı
	dev	velopment							
	• To	Establish a cle	ear under	rstandin	g of the	e role and im	pact of various as	pects of	
	En	gineering and	emergin	ig decisi	ons on	environment	tal, societal and ec	onomic pr	oblems
		0 0	U	C				1	
Course Ou	utcome	s: On successf	ul comp	letion of	f this co	ourse, the stu	dents will be able	to	
CO 1	Under	stand the relev	ance and	d the con	ncept of	f sustainabili	ty and the global i	nitiatives	in this
	Direct	ion.			_				
CO 2	Expla	in the different	types of	f enviroi	nmental	l pollution pi	roblems and their	sustainable	e
CO 3	Discu	ss the environn	nental re	gulatior	ns and s	tandards .			
CO 4	Outlin	e the concepts	related	to conve	entional	and non-con	nventional energy		
CO 5	Demo	nstrate the broa	ad persp	ective o	f sustai	nable practic	es by utilizing eng	gineering	
	knowl	edge and princ	iples.			-		- U	
UNIT-I	•	•	-						

Sustainability:

Introduction, concept, evolution of the concept; Social, environmental and economic sustainability concepts; Sustainable development, Nexus between Technology and Sustainable development; Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), Clean Development Mechanism (CDM).

<u>UNIT – II</u>

Environmental Pollution:

Air Pollution and its effects, Water pollution and its sources, Zero

waste concept and 3 R concepts in solid waste management; Greenhouse effect, Global warming,

Climate change, Ozone layer depletion, Carbon credits, carbon trading and carbon foot print, legal provisions for environmental protection.

<u>UNIT – III</u>

Environmental management standards: ISO 14001:2015 frame work and benefits, Scope and goal of Life Cycle Analysis (LCA), Circular economy, Bio-mimicking, Environment Impact Assessment (EIA), Industrial ecology and industrial symbiosis.

$\underline{UNIT} - IV$

Resources and its utilization: Basic concepts of Conventional and non-conventional energy, General idea about solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy

derived from oceans and Geothermal energy.

UNIT-V

Sustainability practices: Basic concept of sustainable habitat, Methods for increasing energy

efficiency in buildings, Green Engineering, Sustainable Urbanization, Sustainable cities, Sustainable transport

Text Books:

1.Sustainable Engineering: Drivers, Metrics, Tools, And Applications Krishna R. Reddy, Claudio Cameselle, Jeffrey A. Adams.

2. Introduction to Sustainability for Engineers ByTulseeram, Ramjeawon

3. sustainable Engineering: Principles and Practice Hardcover – 13 June 2019 by <u>Bhavik R.</u> <u>Bakshi</u>

Reference Books:

1. Allen, D. T. and Shonnard, D. R., Sustainabilitngineering: Concepts, Design and Case Studies, PrenticeHall.

2. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengagelearning

3. Environment Impact Assessment Guidelines, Notification of Government of India, 2006

4.Mackenthun, K. M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998

5. ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications - GRIHA Rating System

Course	Title	Industrial E	Ingineer	ring & N	B.Tech ME V	B.Tech ME VII Sem				
Course	Code	Category	Hour	s/Week		Credits	Maximum Ma	Maximum Marks		
200E316	6	OEC- IV	L	T	Р	С	Continuous Internal Assessment	End Exam	Total	
			3	0	0	3	40	60	Total 100 0nal hnical and hnical and hnical and hnical and	
Mid Exa	am Dura	tion: 90 Minu	ites			End Exan	n Duration: 3Hr	S		
Course	Objectiv	es:								
• This course provides techniques of applying management principles to professional										
positions held by Engineers and Engineering Technologists										
	• Th	e managemen	t functio	ns, espe	cially s	uited to scien	tist & Profession	als in tech	inical and	
	inc	lustrial enviro	nment a	ire part o	of the cu	ırriculum				
	~									
	• Stu	idents are exp	osed to t	the theor	y and p	ractices of m	odern manageme	ent approa	ches,	
	too	ols and technic	ques in o	complex	industr	ial & Compe	titive economic	environme	ent	
0	0 1	0	<u>c 1</u>	1	<u>C (1)</u>	.1 .	1 / 111 11			
Course	Outcome	s: On success	ful com	pletion o	f this co	burse, the stu	dents will be abl	e to		
CO 1	Underst	and the concept	pts of M	anageme	ent, org	anization pri	nciples and also i	notivation	al	
	qualities	and leadershi	р.							
CO 2	Apply th	ne knowledge	where to	and ho	w to loc	ate a plant, c	lifficulties of pla	nt layout.		
CO 3	Evaluate	e various types	s of wor	k studies	proces	sing charts a	nd job evaluatior	n technique	es.	
CO 4	Apply ty	pes of control	charts a	and impr	ovemen	nt of quality	with analysis tecl	hniques.		
CO 5	Use kno	wledge of mar	nagemer	nt techni	ques in	improving th	ne Entreprise plai	nning and	project	
	manager	ment.				_	_			
UNIT-I	L									

INTRODUCTION:

Concepts of Management and Organization – Functions of Management – Evolution of Management Thought : Taylor''s Scientific Management, Fayol''s Principles of Management, Douglas McGregor''s Theory X and Theory Y, Mayo''s Hawthorne Experiments, Hertzberg''s Two Factor Theory of

Motivation, Maslow"s Hierarchy of Human Needs, Systems Approach to Management.

<u>UNIT-II</u>

PLANT LOCATION & LAYOUT:

Plant location, definition, factors affecting the plant location, comparison of rural and urban sites- methods for selection of plant. Types of production systems, Plant Layout – definition, objectives and types of plant layout.

UNIT-III

WORK STUDY:

Introduction, objectives of work study, steps in work study, purpose of method study, procedure of method study, recording techniques. Work measurement-purpose of work measurement, time studyprocedure-performance rating, standard time calculations (simple problems).

<u>UNIT-IV</u> MATERIALS MANAGEMENT:

Objectives, Inventory – functions, types, associated costs, inventory controltechniques-ABC and VED analysis. Stores Management and Stores Records. Purchasemanagement duties ofpurchase of manager, associated forms, purchase procedure, methods of purchasing. Introduction to production planning and control (PPC) Objectives of PPC, Functions of PPC

UNIT-V

QUALITY CONTROL:

Meaning, process control, SQC control charts, single, double and sequential sampling, Introduction to TQM. Job Evaluation and merit rating: introduction-Job evaluationobjectives, benefits and limitations of job evaluation-methods of job evaluation.

Text Books:

1. DR. Ravi Shankar: Industrial Engineering and management/Galgotia publications pvt. Ltd.

2. Khanna O.P.: Industrial Engineering

Reference Books:

- 1. Industrial engineering and operations management by S.K. Sharma and Savita Sharma.
- 2. T.R. Banga : Industrial Engineering and Management
- 3. M. Mahajan: Industrial engineering and production management, DhanpatRai& Co.

Course Title	Fundamentals of RADAR EngineeringOpen Electives							
Course Code	Category	He	ours/We	eek	Credits	Maxin	Open Electives <u>Maximum Marks</u> Continuou s Internal Assessment End Exams Tot	
200E408	OE	L	Т	Р	С	Continuou s Internal Assessment	End Exams	Total
		3	-		3	40	60	100
Mid Exam Duration: 90 Min					End Exam Duration: 3Hrs			

Course Objectives:

- To gain the knowledge about radar subsystems, their performance and key functions.
- To provide the in depth knowledge and issues related various tracking radars.

Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Understand the essential principles of operation of radar systems.					
CO 2	Describe the various Radar components					
CO 3	Analyze different Radar systems					
CO 4	Analyze the different Tracking methods					

UNIT-I

Fundamentals: Nature of Radar, Maximum Unambiguous Range, Radar Waveforms, Radar block diagram and operation, Radar frequencies, Applications of Radar, simple form of radar range equation. Integration of Radar pulses, Radar cross-Section of targets, PRF.

UNIT-II

Radar components: RF amplifier, TWT, CFA, Modulators, Mixers-Conversion loss, Noise figure, Types of Mixers, Duplexers-Branch type, Balanced and Solid state Duplexers, Displays-CRT displays, A, B, C, E-scopes, PPI, RHI.

UNIT-III

Radar systems: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, FMCW radar, multiple frequency C.W radar.

UNIT-IV

MTI and Pulse Doppler radar: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance. Non-coherent MTI, MTI versus Pulse Doppler radar.

UNIT-V

Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Monopulse Tracking Radar – Amplitude Comparison Monopulse (one- and two- coordinates), Phase

Comparison Monopulse. Target Reflection Characteristics and Angular Accuracy. Tracking in Range, Acquisition and Scanning Patterns. Comparison of Trackers.

Text Books:

- 1. Merrill I.Skolnik, "Introduction to Radar Systems", 2nd edition-TMH 1980.
- 2. N.S. Nagaraja, "Elements of electronic navigation, 2nd edition-TMH 1996.

Course Title		Biomedical Instrumentation					Minor Degree			
Course	Code	Category	Hours/Week		Credits	Maximum Marks		ks		
2091409		EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	-		3	40	60	100	
Mid Exam Duration: 90 MinEnd Exam Duration: 3Hrs										
Course Objectives:										
 To Understand the functioning of Human Cell and its electrical characteristics 										
• To Understand the functioning of cardiovascular measurement and										
circulatory System of heart CO3: Describe various bioelectrodes										
 To Describe Organization of cell and various potentials 										
 To Analyze the electrical hazards that may occur during the usage of medical instruments. 										
Course Outcomes: On successful completion of this course, the students will be able to										
CO 1 Understand the functioning of Human Cell and its electrical characteristics										
CO 2	Understand the functioning of cardiovascular measurement and circulatory System of heart									
CO 3	Describe various bioelectrodes									
CO 4	Describe Organization of cell and various potentials									
CO 5	Analyze the electrical hazards that may occur during the usage of medical									
	instru	ments.								

UNIT I

Components of Medical Instrumentation System: Bio-amplifier, Static and dynamic characteristics of medical instruments. Bio-signals and characteristics. Problems encountered with measurements from human beings.

UNIT II

Organization of cell: Derivation of Nernst equation for membrane Resting Potential Generation and Propagation of Action Potential, Conduction through nerve to neuro-muscular junction.

UNIT III

Bio Electrodes: Bio-potential Electrodes-External electrodes, Internal Electrodes. Biochemical Electrodes.Mechanical function, Electrical Conduction system of the heart, Cardiac cycle. Relation between electrical and mechanical activities of the heart. Pacemaker, Defibrillator

UNIT IV

Cardiac Instrumentation Blood pressure and Blood flow measurement: Specification of ECG machine. Einthoven triangle, Standard 12-lead configurations, Therapeutic equipment,
Shortwave diathermy.

Respiratory Instrumentation: Mechanism of respiration, Spirometry, Pnemuotachograph Ventilators.

UNIT V

Physiotherapy and Electrotherapy Equipment: High frequency heat therapy, Short wave Diathermy, Microwave Diathermy, Ultrasonic Therapy Unit, Electro diagnostic/ Therapeutic Apparatus, Pain relief through electrical stimulation, Diaphragm pacing by Radio-frequency for the treatment of chronic ventilator insufficiency, Bladder stimulators.

Patient electrical safety: Types of hazards, natural protective mechanism, leakage current, patient isolation, hazards in operation rooms, grounding conditions in hospital environment.

Text Books:

- 1. Leslie Cromwell and F.J. Weibell, "Biomedical Instrumentation and Measurements ",E.A. Pfeiffer, PHI, 2nd Ed, 1980.
- 2. John G. Webster, "Medical Instrumentation, Application and Design", John Wiley, 3rd Ed., 1998.

- 1. L.A. Geoddes and L.E. Baker, "Principles of Applied Biomedical Instrumentation", John Wiley, 1975.
- 2. R.S. Khandpur, "Hand-book of Biomedical Instrumentation", TMH, 2nd Ed., 2003.
- 3. Mackay, Stuart R., "Biomedical Telemetry",-John Wiley, 1968.
- 4. M. Armugam, "Biomedical Instrumentation", Anuradha agenciespublications.

Course 7	Гitle]	Digital	l Circu		Minor Degree			
Course C	Code	Category	Hours/Week			Credits	Maxin	num Mar	ks
20914	10	EC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	-		3	40	60	100
Mid Exa	id Exam Duration: 90 Min End Exam Duration: 3Hrs								
Course O)bjecti	ves:							
To pro	• To provide fundamentals of number systems and Boolean Algebra.								
• To lea	 To learn the design of combinational and sequential circuits. 								
To tea	h var	ious memories	and PI F)c	•				
• 10104		ious memories		/3.					
Course O) utcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to	
CO 1	Under	stand various n	umber s	systems	and bin	ary codes.			
CO 2	Under	stand the nost	ulates t	heorem	ns and n	ronerties	of Boolean al	zehra	
	Deceri	be the correle	tion bot		$\frac{15 \text{ and } p}{15 \text{ Dec}}$		or boolcall al		nonding
003	Descri	be the correla	tion be	tween t	ne Boo	lean expre	ession and the	eir corres	ponding
	logic diagram.								
00.4									
CO 4	Analy	ze Combination	nal & se	quentia	l logic c	ircuits.			
CO 5	Solve	Switching func	tions usi	ng Prog	rammab	ole Logic I	Devices.		

UNIT-I

Number Systems & Codes: Overview of number systems –complement representation of negative numbers- binary arithmetic, binary codes, code conversion, error detecting & error correcting codes –Hamming codes.

UNIT-II

Boolean Algebra and Minimization of Switching Functions: Fundamental postulates of Boolean Algebra - Basic theorems and properties –Canonical and Standard forms-Minimal SOP and POS forms ,Algebraic simplification, digital logic gates –universal gates-Multilevel NAND/NOR realizations. The K- map method, tabulation method.

UNIT-III

Combinational Logic Design: Design using conventional logic gates, Half and Full Adders, Subtractors, Serial and Parallel Adders, Encoder, Decoder, Multiplexer, De-Multiplexer, Realization of switching functions using multiplexer, Parity bit generator, Code-converters, Hazards and hazard free realizations.

UNIT-IV

Sequential Logic Design: Synchronous and Asynchronous sequential circuits, Flip-flops-Triggering and excitation tables, Flip flop conversions, shift registers, Design of Synchronous and Asynchronous counters, Ring and Johnson counters. Finite state machines (Mealy Model, Moore Model) and their representation, Designing synchronous Sequential circuits like Serial Binary adder, Sequence detector.

UNIT-V

Semiconductor Memories and Programmable Logic Devices: ROM- Internal structure, Static RAM and Dynamic RAM. Basic PLD"s-ROM, PROM, PLA, and PAL, Realization of Switching functions using basic PLD"s. Concept of PLD"s like CPLDs and FPGAs.

Text Books:

1. ZVI Kohavi, Switching & Finite Automata theory –, TMH, 2ndEdition.

2. Morris Mano, "Digital Design", PHI, 3rd Edition, 2006.

3. A. Anand Kumar, "Switching Theory & Logic Design", 2008, PHI.

Reference Books:

1. R. P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.

2. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition, 2006.

3. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989

4. William I. Fletcher, "An Engineering Approach to Digital Design", PHI.

5. Charles H. Roth, "Fundamentals of Logic Design", Thomson Publications, 5th Edition, 2004.

6. John M. Yarbrough, "Digital Logic Applications and Design", Thomson Publications,

Course	•	Ру	thon Pr	ogramn	ning		B. Tech VI	B. Tech VII Sem (R20) CSE		
Title		(Op	en Elec	tive Co	urse -I	V)				
Course	•	Category	He	Hours/Week			Max	Maximum Marks		
Code						its				
20OE5	508	OE	L	Т	Р	С	Continuous Internal Assessment	End Exams	Tot al	
		C	3	0	0	3	40	60	100	
	Mid Exam Duration: 90 MinsEnd Exam Duration: 3Hrs									
Course (Course Objectives:									
• Und	• Understand programming skills using basics of Python language									
• Acq	• Acquire basics of how to use collection data types of python language.									
• To I	[ntroduc	e the object-or	iented p	rogram	ning co	ncepts.				
• To t	understa	nd Python Lib	raries N	umPy ai	nd Pand	las.				
• To c	design a	client server n	nodel us	ing netv	vork Pr	ogrammir	ng in python.			
Course (Outcom	es: On success	ful com	pletion	of this o	course, the	e students will b	be able to		
CO 1	Demon output	strate and acquistrate and in p	uire kno bython p	wledge (rogramr	on usag ning.	e of Data	types, operators	s, input and	l	
CO 2	Identify	y the right sequ	iences o	f pythor	n langua	ige in pro	blem solving.			
CO 3	Apply	object-oriented	l feature	s to solv	ve real t	ime appli	cations			
CO 2	Analyz	e the given pro	blem ar	nd devel	op pyth	on progra	am to solve the j	problem		
CO 4	Able to	use Numerica	l Pythor	n (NumF	Py) Libi	aryd for o	data processing.			
CO 5	Apply	network progra	amming	features	s of pytl	non for In	ternet application	ons		

<u>UNIT-I</u>

Introduction: Data Types, Object References, Collection Data Types, Logical Operations, Control Flow Statements, Arithmetic Operators, Input/Output, Creating and Calling Functions.

<u>UNIT-II</u>

Collection Data Types: Sequence Types, Set Types, Mapping Types, Iterating and Copying Collections, Control Structures, Exception Handling, Custom Functions, Modules and packages.

<u>UNIT-III</u>

File Handling and OOP: Writing and Parsing Text Files, Object Oriented Approach, Concepts and Terminology, Attributes and Methods, Inheritance and Polymorphism, Using properties to control attribute access, creating complete fully integrated data types.

UNIT-IV

NumPy Basics: The NumPy ndarray, Creating ndarray, Data Types for ndarray, Operations between Arrays and Scalars, Basic Indexing and Slicing, Boolean Indexing, Universal Functions, Data Processing using Arrays.

<u>UNIT-V</u>

Introduction to Internet Programming: What is Client/Server Architecture? Sockets: Communication End points, Network Programming in Python: Socket() Module Function, Socket Object Built-In Methods, creating a TCP Server, creating a TCP Client. [Text Book 4]

Text Books:

- Programming in Python 3, A complete Introduction to Python Language by Mark Summerfield, Pearson Publications, second edition, 2018
- 2. Core python programming by Wesley J Chun, Prentice Hall, Second edition.
- 3. Python for Data Analysis by Wes McKinney, O'Reilly, First Edition.
- 4. Core Python Applications Programming by Wesley J. Chun, Third Edition.

- Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher.
- 2. Learning python, Mark Lutz, O'Reilly publications,5th edition, 2013
- 3. Python: The complete reference by Martin C Brown, McGraw-Hill Publication, 2018.
- Core python programming by Dr. R. Nageswara Rao, Dreamtech press, second edition, 2018.

Cours Title	e	((Oper	Cloud C n Electiv	omputi ve Cour	ng ˈse -IV)	B.Tech VII Sem (H		
Cours Code	e	Category	Hours/Week Credi ts			Maximum Marks			
200	E509	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Tot al
			3	0	0	3	40	60	100
	Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs								
Course	ourse Objectives:								
•	• To explain the history of different computing paradigms.								
•	To Kno	w about issues	and virt	ualizatio	on in c	loud			
•	To intro	oduce the vario	us level	s of Clo	oud Ser	vices and	applications that	at can be a	achieved
	by the c	cloud.							
•	To know	w about cloud a	access ar	nd secur	ity issu	ies.			
Course	Outcon	nes: On succes	sful con	pletion	of thi	s course, t	he students wi	ll be able	to
CO 1	Recall	different Comp	outing Pa	aradigm	s and o	verview of	f cloud computi	ng.	
CO 2	Unders migrati	standing the Calor strategy.	loud Co	omputing	g Arch	itecture, n	etwork connec	ctivity and	l cloud
CO 3	Explain	n and character	ize diffe	rent clo	ud dep	loyment m	odels, service n	nodels.	
CO 4	Unders	standing virtual	ization,	Program	ming	models and	l Software Deve	elopment	in Cloud
	Compu	iting.		-	-			-	
CO 5	Unders	standing Cloud	Service	Provide	rs AW	S and Mici	rosoft cloud Ser	rvices.	

<u>UNIT-I</u>

Computing Paradigms, Cloud Computing Fundamentals, Motivation for Cloud Computing: The Need for Cloud Computing. Defining Cloud Computing: NIST Definition of Cloud Computing, Computing Is a Service, Cloud Computing Is a Platform. Principles of Cloud computing: Five Essential Characteristics, Four Cloud Deployment Models, Three Service Offering Models, Cloud Ecosystem, Requirements for Cloud Services, Cloud Application, Benefits and Drawbacks.

<u>UNIT-II</u>

Cloud Computing Architecture and Management: Cloud Architecture, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications on the Cloud, Managing the Cloud, Migrating Application to Cloud.

UNIT-III

Cloud Deployment Models: Private Cloud, Public Cloud, Community Cloud, Hybrid Cloud.

Cloud Service Models: Infrastructure as a Service, Platform as a Service, Software as a Service, Other

Cloud Service Models.

UNIT-IV

Virtualization: Introduction, Virtualization opportunities, Approaches to Virtualization, Hypervisors, From Virtualization to cloud computing.

Programming Models in Cloud: Cloud Application Development Platforms: Windows Azure, Google App Engine, Force.com, Manjrasoft Aneka.

Software Development in Cloud: Introduction, Different perspectives on SaaS development, New challenges, Cloud aware software development using PaaS technology.

UNIT-V

Cloud Services : Using Amazon Web Services – Understanding AWS, AWS Components and Services, Working with the Elastic Compute Cloud (EC2), Amazon Storage Systems, Amazon Database Services, Using Microsoft Cloud Services – Exploring Microsoft Cloud Services, Defining the Windows Azure Platform.

Text Books:

- 1. Barrie Sosinsky, "Cloud Computing Bile", Wiley publishing.
- Judith Hurwitz, R Bloor, M.Kanfman, F.Halper "Cloud Computing for Dummies", Wiley India Edition, First Edition.
- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, "Cloud Computing: Principles and Paradigms", Wiley Publication, 2011.
- 4. K.Chandrasekaran, Essentials of Cloud Computing, CRC Press, 2015.

- Danielle Ruest and Nelson Ruest, "Virtualization: A Beginners's Guide", McGraw Hill, 2009.
- 2. Tom White, "Hadoop: The Definitive Guide", O'RIELLY Media 2009.
- 3. Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012.

Course Title	DATA AN (Ope	ALYT n Elect	ICS W	ITH PY 1rse – I	YTHON (V)	B.Tech. VII Sem (R20UG) AI&ML			
Course Code	Category	Ho	urs / W	eek	Credits	Maximum Marks			
20OE3907	OF OEC L T P		С	Continuous Internal Assessment End Exams					
		3	0	0	3	40	60	100	
Mid Ex	Mid Exam Duration: 90 MinutesEnd Exam Duration: 3 Hrs								
Unders To intro Acquire To und Course Outc	 Course Objectives: Understand programming skills using basics of Python language To introduce the object-oriented programming concepts. Acquire basics of how to translate problem into object-oriented form To understand object-oriented programming concepts, and apply them in solvingproblems. 								
CO 1	Demonstration output state	ite and ements	acquire in pyth	e know on prog	ledge on gramming	usage of Data types,	operators, inj	out and	
CO 2	Analyze th	e giver	proble	m and c	levelop p	ython program to solve	the problem.		
CO 3	Able to use	e prope	r iterativ	ve state	ments in	problem solving.			
CO 4	Entity the 1	right se	quence	to solve	e the real-	world problems.			
CO 5	Apply obje	ct-orie	nted fea	tures to	solve rea	al time applications.			

<u>UNIT - I</u>

Features of python, Execution of a python program, comments, identifiers and variables, classification of data types, keywords, constants, Naming conventions in python, Operators and expressions, operator precedence and associativity, input and output statements.

<u>UNIT - II</u>

Control statements: simple if, if..else, nested if, if..elif..else statement. **Loops:** while loop, for loop, nested loops, break, continue, pass and assert statements, Arrays in python, Strings and their operations.

<u>UNIT - III</u>

Functions: define and calling a function, return statement, formal and actual arguments, local and global variables, passing arguments to function, anonymous functions, example programs on functions, recursion.

<u>UNIT - IV</u>

Sequences: Lists, Tuples, Sets, Dictionaries, Operations and methods on Tuples, Lists, Dictionaries. **Files:** Types of files, opening file, closing a file, write data into a file, read data from a file.

<u>UNIT - V</u>

Introduction to OOPS: Introduction to class and objects, self-variable in python, constructor, types of variables and methods, Inheritance and polymorphism, abstract class.

Text Books:

- 1. Core python programming by Wesley J Chun, Prentice Hall, Second edition.
- 2. Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher.
- **3.** Learning python, Mark Lutz, O'Reilly publications, 5th edition, 2013.
- 4. Core python programming by Dr. R. Nageswara Rao, Dreamtech press, second edition, 2018

<u>Reference Books</u>:

- 1. Python: The complete reference by Martin C Brown, McGraw-Hill Publication, 2018.
- 2. Programming Python, Mark Lutz,4th Edition, O'Reilly publications.
- 3. Dive into Python, Mark Pilgrim, A Press Media, LLC.

Course Title	WEB DI (Open	ESIGN Elect	NING ive Co	USIN Durse	G PHP – IV)	B.Tech. VII Sem (R20UG) AI&ML				
Course Code	Category	Hou	ırs / W	Veek	Credits	Maximum Marks				
20OE3908	OEC	L	Т	Р	С	Continuous Internal End Exams Assessment		Total		
		3	0	0	3	40	60	100		
Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hrs										
 Fam Writ and . Under valid Course Outce 	 Course Objectives: Familiarize the tags of HTML. Write backend code in PHP language and writing optimized front end code HTML and Java Script. Understand, create and debug database related queries and Create test code to validate the applications against client requirement. Course Outcomes: On successful completion of this course, the students will be able to									
C01	Enumerate	the B	asic C	Concep	ots of Mark	up Languages.				
CO2	Develop w	eb Ap	plicat	ions u	sing CSS a	nd different page layou	t.			
CO3	Make use of decisions, loops, strings in PHP									
CO4	Make use of	of fun	ctions,	creati	ing HTML	forms with PHP.				
CO5	Accessing	datab	ase thr	ough	PHP.					

<u>UNIT – I</u>

Structuring Documents for the Web: Introducing HTML and XHTML, Basic Text Formatting, Presentational Elements, Phrase Elements, Lists, Editing Text, Core Elements and Attributes, Attribute Groups.

Links and Navigation: Basic Links, Creating Links with the Element, Advanced E- mail Links.

Images, Audio, and Video: Adding Images Using the error! File name not specified Element, Using Images as Links Image Maps, Choosing the Right Image Format, Adding Flash, Video and Audio to your web pages.

Tables: Introducing Tables, Grouping Section of a Table, Nested Tables, Accessing Tables.

Forms: Introducing Forms, Form Controls, Sending Form Data to the Server.

Frames: Introducing Frameset, Element, Creating Links between Frames, setting a Default Target Frame Using Element, Nested Framesets, Inline or Floating Frames with.

<u>UNIT – II</u>

Cascading Style Sheets: Introducing CSS, where you can Add CSS Rules.

CSS Properties: Controlling Text, Text Formatting, Text Pseudo Classes, Selectors, Lengths, Introducing the Box Model.

More Cascading Style Sheets: Links, Lists, Tables, Outlines, the focus and activate Pseudo classes

Generated Content, Miscellaneous Properties, Additional Rules, Positioning and Layout with CSS. **Page Layout:** Understating the Site's Audience, Page Size, Designing Pages, coding your Design, Developing for Mobile Devices.

Design Issues: Typography, Navigation, Tables, Forms.

<u>UNIT – III</u>

Introducing PHP – What is PHP? Why PHP use? Evolution of PHP, Installing PHP, Other ways to run PHP, Creating your first script.

PHP Language Basics – Using variables, Understanding Data Types, Operators and Expressions, Constants.

Decisions and Loops – Making Decisions, Doing Repetitive Tasks with Looping, Mixing Decisions and Looping with HTML.

Strings – Creating and Accessing Strings, Searching Strings, Replacing Text with Strings, Dealing with Upper and Lowercase, Formatting Strings.

<u>UNIT – IV</u>

Arrays – Creating Arrays, Accessing Array Elements, Looping Through Arrays with for-each, Working with Multidimensional Arrays, Manipulating Arrays.

Functions – What is a Function? Why Functions are useful? Calling Functions, Working with Variable Functions, writing your own Functions, Working with References, Writing Recursive Functions.

Handling HTML Forms with PHP – How HTML form works, Capturing Form Data with PHP, Dealing with Multi-Value Fields, Generating Web Forms with PHP, Storing PHP Variables in Forms, Creating File Upload Forms, Redirecting After a Form Submission.

<u>UNIT – V</u>

Working with Files: Getting Information on Files, Opening and Closing Files, Reading and Writing to Files, Copying, Renaming, and Deleting Files.

Working with Databases and MySQL – Database Architectures, Database Models, Starting the MySQL Server, Setting Up the MySQL root Password, making a Connection, choosing a Database, creating a New Database, Reading Data, creating a Table, Adding Data to a Table, Reading Data from a Table, Updating Data in a Table, Deleting Data from a Table, Deleting Tables and Databases, Handling Errors.

Text Books:

- 1. Jon Duckett, Beginning HTML, XTML, CSS and JavaScript
- 2. Matt Doyle, Beginning PHP 5.3 (Wrox Wiley Publishing)

- 1. Chris Bates, Web Programming
- 2. Ralph Moseley and M. T. Savaliya, Developing Web Applications
- 3. P.J. Deitel & H.M. Deitel, Internet and World Wide Web How to program
- 4. W. Jason Gilmore, Beginning PHP and MySQL From Novice to Professional

Course T	ſitle	OPERAT	IONS	RESE	ARC	OPEN ELECTIVE - IV			
Course (Code	Category	Hours/Week			Credits	Maximum Marks		
20OE6	617	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3			3	40	60	100
Mid Exam Duration: 90 MinutesEnd Exam Duration: 3Hours									
The course the course the solvir	Course Objectives: The course is intended to identify and develop operations research models, understand the mathematical tools to solve optimization problems and develop a report that describes the model, the solving techniques and analyze the results.								
Course O	Outcom	e: On success	ful con	pletio	n of tl	his course, th	ne students will b	e able to	
CO 1	Unde	rstand variou	s conce	pts of	Opera	ations researc	ch.		
CO 2	Apply	y linear progra	ımming	; to opt	imiza	tion technique	ues.		
CO 3	Discu	ss Transportat	tion pro	blem.					
CO 4	Solve	Assignment p	oroblem	ı.					
CO 5	Distin conce	uguish a game pts of players.	e situati strateg	on from	m a p ayoffs	ure individu , rationality.	al's decision prob	olem and to	explain

UNIT I: Introduction to Operations research

Introduction, Models of Operations research, Advantages of Operations research, Limitations of Operations research

UNIT II: Linear Programming

Linear programming, Assumptions of linear programming, Properties of linear programming solution, Development of LP models, Graphical method, Simplex method.

UNIT III: Transportation Problem

Transportation problem, Mathematical model for transportation problem, Types of transportation problem, Starting solutions: North- West corner rule, Least cost method, Vogel's approximation method.

UNIT IV: Assignment Problem

Assignment problem – Hungarian method.

UNIT V: Game Theory

Introduction to Game Theory, Properties of a Game, Characteristics of Game Theory, Classification of Games, The Maximin-Minimax Principle, Two-Person and Zero-Sum Game, Games with Mixed Strategies, Method of finding out odds.

Text books:

- 1. Operations Research by N.K.Tiwari, Shishir K. Shandilya Prentice-Hall of India.
- 2. Operations Research by R. Pannerselvam, PHI Publications, 2nd Edition, 2012
- 3. Fundamentals of Operations Research, Prism publishers, Ackoff Russell LSasieni Maurice W.
- 4. Introduction to Operations Research, Cengage Publishers, Ecker Joseph Gkupferschmid Michael.

- 1. Engineering Optimization by Singiresu S. Rao New Age International Publishers.
- 2. Operations Research by Kanthi Swarup, P.K.Gupta and Manmohan, S. Chand & Sons, 2004.
- 3. Introduction to Operations Research, TMH Publishers, Hiller Fredrick S, Lieberman Gerald J, Nag Bodhibr.
- 4. Introduction to Operations Research a Computer Oriented algorithmic, Gillett Billy E.

Course Title	FUNDAN COMI	AENTA PUTATI PHO	LS OF ION AN FONIC	QUAN'. ID NAN S	ГUM Ю	OPEN	ELECTIVE	- 4
Course Code	Category	Hours/Week			Credits	Maximum Marks		
180E2618	BSC	L	Т	Р	С	Continuous Internal Assessment	End lab Exams	Total
		3	0	0	3	30	70	100
						End Exam	Duration: 3	Hrs

COURSE OBJECTIVES:

- 1. This course outlines physically the intuitive concepts of quantum computation and nanophotonics using the concept of optical near-fields.
- 2. 2.Physics of information processing; quantum error correction; quantum communication, Optical near-field is an electromagnetic field that mediates the interaction between nanometric materials used for the realization of novel photonic devices, fabrication techniques, and systems.
- 3. Prior knowledge of quantum mechanics and photonics is helpful.

Course Outcomes: Upon completion of the course, the student will be able to:

	Explain the concepts of Quantum mechanics.
CO1	
CO2	Understanding the basic concepts of quantum computation.
CO3	Identify the different implementations of quantum computers.
CO4	Analyze the nanophotonics and its true nature
CO5	Classify the Interconnections for nanophotonics

UNIT –I: Quantum Mechanics

Introduction to Matter Waves - de Broglie Hypothesis - Heisenberg Uncertainty Principle - Schrodinger's time independent wave equation - Significance of wave function.

UNIT –II: Quantum Computing

Basic concepts of quantum mechanics – Stern - Gerlach Experiment - Qubits – Measurements – Gates - Quantum no-cloning and Teleportation.

UNIT -III: Error Correction and Implementations

Quantum Error-Correction - three-qubit bit flip code - five-qubit code - General properties of quantum error-correction.

First Experimental Implementations - Quantum optics implementations -NMR quantum information processing.

UNIT -IV: Nanophotonics

Photons and Electrons: Similarities and Differences - Confinement – Propagation-free space, Forbidden Zone: Tunneling. UNIT – V: Nanophotonic systems

Nanotechnology- Photonics - Nanophotonics - Optical Nanomaterials - Nanoparticle Coatings -Sunscreen Nanoparticles - Self-Cleaning Glass - Fluorescent Quantum Dots – Nanobarcodes.

Text Books:

- 1. Quantum Computing Basics and Concepts by S. M. Girvin arXiv, 2013
- Principles of Nanophotonics by Motoichi Ohtsu, Kiyoshi Kobayashi, Tadashi Kawazoe, Takashi Yatsui and Makoto Naru -New York, USA: CRC Press-Taylor & Francis Group, 2008.

3. Paras. N. Prasad, Nanophotonics. New Jersey, USA: John Wiley & Sons Inc., 2004

Reference Books:

1. Quantum Computing by John Watrous - University of Calgary , 2006

2.Basic Concepts in Quantum Computing by Artur Ekert, Patrick Hayden, Hitoshi Inamori – ar Xiv, 2000

3. An Introduction to Quantum Computing for Non-Physicists" Eleanor Rieffel FX Palo Alto Labratory and Wolfgang Polak Consultant FX Palo Alto Laboratory.

Course Title	Green	Chemis	stry and	B. Tech. (Open Elective-IV)				
Course Code	Category	H	ours/We	eek	Credits	Maxin	um Mar	ks
200E619	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		3	0	0	3	40	60	100
Mid Exam Duration: 90 Min						End Exam	Duratio	n: 3Hrs
 Course Objectives: To make students aware of how chemical processes can be designed, developed and run in a 								

- To make students awar sustainable way.
- Students acquire the competence to think of chemistry as a sustainable activity

Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Understand the tolls & Principles of Green Chemistry					
CO 2	Knowledge of applications of green routes for synthesis of chemicals					
CO 3	Synthesis of biocatalysts using different techniques					
CO 4	Analyze about trends of solvent free chemical reactions					
CO 5	Better realization about reflections of Green Chemistry on sustainable development					
	initiatives.					

Unit-1: Fundamentals of Green Chemistry:

Discussion of the current state of chemistry and the environment and the definition of green chemistry. An introduction to the tools of green chemistry and its fundamental principles.

Learning Outcomes:

After completing this unit, the student will be able to

- Summarize the principles in green chemistry.
- Understand the importance of green chemistry in future development

Unit-2: Principles of Green Chemistry:

Prevention of waste / by-products, Hazardous products Designing of safer chemicals-Selection of appropriate solvents and starting materials- Use of protecting groups and catalysis- Designing of biodegradable products.

Learning Outcomes:

After completing this unit, the student will be able to

- Explain the importance of designing of safer chemicals.
- Interpret the need for selection of appropriate solvents and starting materials in chemical reactions.

UNIT-3: Catalysis for Green Chemistry:

Use of biocatalysts- Biochemical Oxidation, Biochemical Reduction, Modified biocatalyststransition metal catalysis-Simmons-Smith reaction, Heak reaction, Ullmann's coupling.

Learning Outcomes:

After completing this unit, the student will be able to

- Know the use of biocatalysts.
- Explain transition metal catalysis reactions

UNIT-4: Synthesis of green chemistry

a) **Solvent Free Reactions:** Solvent free techniques- Reactions on solid mineral supports, Phase Transfer Catalysis- C-alkylation, N-alkylation.

b) Ultrasound assisted green synthesis Introduction to ultrasound assisted green synthesis, Hydroboration, Bouveault reaction.

Learning Outcomes:

After completing this unit, the student will be able to

- Explain solvent free reactions in green synthesis
- Understand the importance of ultrasound assisted Green synthesis

UNIT-5: Applications of Green Chemistry

Importance of Green chemistry in Sustainable development. Applications in Pharmaceutical Industry, Nanoscience, Chemical industry, Colour, Paper, polymer, Solar cells & in agriculture field.

Textbooks:

- 1. Engineering Chemistry, Fundamentals and Applications, Shikha Agarwal
- 2. Green Chemistry: Theory & Practice, Oxford University Press, Oxford publication, 1998
- 3. Green chemistry, Stanley E. Manahan, ChemChar Research, Inc publishers 2005.
- 4. Introduction to Green Chemistry, Second edition, Albert Matlack, CRC Press 2016

References:

- 1. Text Book of Engineering Chemistry by S.S. Dara & Mukkati S. Chand & Co Publishers, New Delhi, 2006.
- 2. Handbook of Green chemistry and technology, James H. Clark, Duncan J. MacQuarrie, Blackwell, Abingdon,2002
- 3. An Introduction Text on Green Chemistry, Indu Tucker Sidhwani, Rakesh K. Sharma, Wiley Publications
- 4. Green Organic Chemistry in Lecture and laboratory, Andrew P. Dicks & Michael C. Cann, T& F India publications.

Course Title	C	Creativ	ve Writ	ting	OPEN ELEC	CTIVE – IV			
Course Code	Category	Ho	ours/W	eek	Credits	Maximum Marks			
20OE620	HUM	L	Т	Р	С	Internal Assessment	External Exams	Total	
		3	0	0	3	40	60	100	
Mid Evam: 90	Min		End Exam Duration: 3Hrs						

Course Objectives:

- To acquaint the learners with ideas related to creative writing including the art, the craft and the basic skills required for a creative writer
- To help learners to understand the principles of creative writing and the distinction between the literary genres
- > To explain the differences in writing for various literary and social media
- > To hone the creative and critical faculties of learners
- To enable learners to put into practice the various forms of creative writing that they have studied through the course

Course	Course Outcomes: On successful completion of this course, the students will be able to					
CO 1	Distinguish between the literary genres					
CO 2	Write for various literary and social media					
CO 3	Critically appreciate various forms of literature					
CO 4	Make innovative use of their creative and critical faculties					
CO 5	Seek employment in various creative fields					

Unit I: Fundamentals of Creative Writing: (6 Hours)

Meaning and Significance of Creative Writing - Genres of Creative Writing: poetry, fiction, nonfiction, drama and other forms - Research for Creative Writing

Unit II: Elements of Creative Writing :(8 Hours)

Main elements of creative writing- Vocabulary improvement- often used Latin expressions in English- Idiomatic expressions.

Unit III: Forms of Creative Writing: (8 Hours)

Dialogue writing - Note making/Note taking - Short story writing - Expansion of an Idea /

Proverb -Creative writing for marketing - Self-Narrative Writing

Unit IV: New Trends in Creative Writing (8 Hours)

Web Content Writing and Blog Writing- Script Writing- Journalistic Writing – Copywriting-Graphic Novel- Flash Fiction

Unit V: Figurative Language

Literary Devices- Importance of figurative language in creative writing- Most common literary devices- Remedial grammar.

References:

- Creative Writing: A Beginner's Manual AnjanaNeira Dev. AnuradhaMarwah, Swati Pal Delhi, Pearson Longman, 2009.
- Abrams, M.H. Glossary of Literary Terms. Boston: Wadsworth Publishing Company,2005.
- Elements of Literature: Essay, Fiction, Poetry, Drama, Film. Robert Scholes, Nancy R. Comley, Carl H. Klaus, Michael Silverman Delhi, OUP, 2007.
- Write from the Heart: Unleashing the power of Your Creativity. Hal ZinaBennet California, New World Library,2001.
- A Guide to Writing about Literature, Sylvan Bamet, William E.Cain, New Delhi, Pearson, 2006.
- Atwood, Margaret. Negotiating with the Dead: A Writer on Writing. Cambridge: CUP,2002.
- Bell, Julia and Magrs, Paul. The Creative Writing Course-Book. London: Macmillan, 2001.
- Earnshaw, Steven (Ed). The Handbook of Creative Writing. Edinburgh: EUP, 2007.
- Show, Mark. Successful Writing for Design, Advertising and Marketing. New York: Laurence King, 2012.
- Sugrman, Joseph .The Adweek Copywriting Handbook: The Ultimate Guide to WritingPowerful Advertising and Marketing Copy from One of America's Top Copywriters. NewYork: Wiley, 2009.

Cyber Resources:

http://www.chillibreeze.com/articles_various/creativewriter.asp http://www.contentwriter.in/articles/writing/

http://www.cbse.nic.in/cw-xii/creative-writing-xii-unit-1.pdf.

Course Title	Mater	ials M	anage	ment		B. Tech. Open Elective - IV				
Course Code	Categor y	Hours/Week Credits			Credits	Maximum Marks				
200E621	Open Elective (OEC)	L	Т	P	С	C Continuous Internal Assessment		Total		
		3	0	0	3	40	60	100		
	Mid Exam I	Durati	on: 90	Min		End Exam Duration: 3Hrs				
• • Course Out CO 1	logistics and To sensitize Controlling, Standardizing To realize the Use of TQM, tcomes: On su	supply the stu Stori g e impo , JIT an uccessi	chain dents o ng, H rtance nd SCM ful com	opera on the Iandl of ma I in m opletio	ations. materials ing, Pacl aterials bot nanaging r on of this o	management function (aging, Shipping) h in product and serve naterials. (course, the students ve	ons – Plan and Dist vice. will be able	ning, Purchase, tributing, and e to		
	types et	Remembering the concepts of purchases, vendors, materials handling, inventory types etc.								
CO 2	An unders inmaterial	An understanding of basic concepts in Materials management and modern trends inmaterials management								
CO 3	Analyze tł andEOQ e	Analyze the processes of vendor management, material handling, ABC analysis and EOQ etc								
CO 4	An unders handling p	An understanding of principle of materials handling and evaluation of material handling performance.								
CO 5	Able to ap	Able to apply the techniques of inventory management.								

Unit - I

Purchase Management: Overview, Purchase organization, Ethical Concepts in purchases, PurchaseParameters, purchase Methods. International Purchasing, International purchasing procedure.

Unit - II

Vendor Management: Vendor Evaluation - factors, advantages and disadvantages, parameters. Vendormanagement process. Recent trends in Vendor management

Unit - III

Materials Handling: Handling Principles, handling costs, unit load concept, flow pattern, materialhandling equipment's, evaluation of materials handling performance, safety in materials handling.

Unit - IV

Inventory Management: Types of Inventory, Costs Associated with Inventory, Inventory Control, Selective Inventory Control, Economic Order Quantity, ABC Analysis, Safety Stocks, Inventory Management Systems, Forecasting Techniques, Material Requirement Planning.

Unit - V

Computers in Materials Management: Introduction, Role of Computers in Materials Management: Advantages and Disadvantage of Computer in Materials Management, Materials Planning: Need for Materials Planning, Techniques of Materials Planning.

Text Book:

Material Management by K. ShridharaBhat

- 1. Purchasing and Materials Management, P Gopalkrishnan,
- 2. Materials Management An Integrated Approach, P Gopalkrishnan, M. Sundaresan, PHI.
- 3. Materials Management, Procedures, Text and Cases, A K Datta, PHI.
- 4. Production & Operation Management by K Ashwathappa, K ShridharaBhat

Course '	Title	Practices in Geo-Tec	B.Tech CE VII Sem (R20)							
Course	Code	Category	Hours/Week Credits			Credits	Maximum Marks			
20015	S 5	Skill Oriented Course	L	Т	Р	С	Continuous	End		
		(SOC V)					Internal	Enu Evam	Total	
							Assessment	L'Aam		
			1	0	2	2	40	60	100	
		Mid Exam Duration: 1.5	5 Hrs				End Exam D	Duration:	3 Hrs	
Course O	bjectiv	es:								
• To	introdu	ice traditional program con	sistin	g mo	stly o	of practica	l courses related	d to geote	chnical	
eng	gineerin	g.								
• To	apply	the knowledge of scient	ce, n	nather	natic	s and en	gineering with	the con	text of	
app	plication	ns in geotechnical engineering	ng.							
• To	design	and conduct experiments, a	analyz	ze and	1 inte	erpret data	related to the v	arious lab	oratory	
tes	ts studie	ed in geotechnical engineeri	ng.							
• To	• To classify the soils based on the field identification (coarse and fine)									
• To estimate the bearing capacity and design the various types of foundations										
Course O	utcome	s: On successful completion	n of th	nis co	urse,	the studen	ts will be able to	0		
CO 1	Do various soil identification and classification tests									
CO 2	Select suitable boring methods to collect the soils									
CO 3	Use the modern equipment to find the shear and settlement properties of the soils									
CO 4	Select	the testing facilitates to cate	r the	requi	reme	nt of selec	tion of proper so	er soil type as per the		
CO 4	requirement.									
CO 5	Use the	e techniques, skills, and mo	dern t	ools 1	neces	sary for er	igineering practi	ice.		

<u>UNIT – I</u>

Field Identification of Soils

Identifying soils for various types of constructions, Preparation of Report

<u>UNIT – II</u>

Soil Sample Collection Methods

Types of samples and samplers - Types of Augers, Boring methods

<u>UNIT – III</u>

Advanced Testing Methods

Field CBR Method, Triaxial Shear Test (Digitized), Consolidation Test (Digitized)

<u>UNIT – IV</u>

Penetration Methods

Standard Penetration Test, Cone Penetration Test

<u>UNIT – V</u>

Designs of SBC and types of foundations using software tools

Bearing capacity by Terzaghi, Mayerhoff, Vesic methods – Design of footings for multistory structure, silos, transmission tower, and machines.

Text Books:

- 1. S Mittal and J P Shukla "Soil Testing for Engineers", Khanna Publishers, New Delhi.
- 2. T G Sitharam and T N Ramamurthy "Geotechnical Engineering", S Chand Publishing, New Delhi
- 3. Analysis and Design of Foundation J. E. Bowles
- Engineering Properties of Soil and Their Measurements- Bowles J.E. (1988), McGraw Hill Book Co. New York

- 1. Foundation Engineering M.J. Tomlinson
- 2. Analysis and Design of Substructures Swami Saran
- 3. Foundation Design Coduto
- 4. SP 36 Compendium of Soil Mechanics (Part 1 & 2)
- 5. IS: 2911 (All Parts)

Course Title	Industr	ial/Rese	earch l	B.Tech CE VII Sem (R20)					
Course Code	Category Hours/Week C		Credits	Maximum Marks					
2001710	PR	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		0	0	6	6	100		100	
	Mid Exam	End Exam Duration:							
Course Ob	jectives:								
• To a	pply the concepts	s and th	eories	learne	ed in classroo	om to real world ci	vil engir	neering	
prob	lems.								
 To develop proficiency in using industry specific software, tools and equipment used in civil engineering projects. To enhance ability to work effectively in multidisciplinary team environment and industry professionals. 									
• To c	levelop critical th	inking a	and pro	oblem	solving skill	s by tackling real l	ife engir	neering	
chal	lenges and propos	ing viat	ole solu	itions.	U		U	U	
			1	<u>.</u>					
• 101	nculcate the report	t writing	g and e	ffectiv	ve communic	ation skills of the w	ork don	e.	
Course Ou	tcomes: On succe	ssful co	mpleti	on of	this course, th	ne students will be	able to		
CO 1 U p	Understand how engineering principles and concepts are implemented in practical problems.								
CO 2	Gain hands on experience and exposer to real world civil engineering projects enabling to apply theoretical knowledge to practical situations.								
CO3 C	ontribute to the rojects.	plannin	g, desi	ign, c	onstruction of	or maintains of ci	vil engii	neering	
CO 4 A	pply analytical nallenges encount	and cri ered dui	tical tring int	hinkii ternsh	ng skills to ip.	identify and solv	ve engir	neering	
CO 5 P	repare professiona	al docun	nentati	on for	the work car	ried out			

A student may complete the training before the beginning of 7th semester and the evaluation and credits will be awarded in 7th semester through internal assessment process only. The duration of the internship or practical training will be for a minimum of 4 weeks. Internship must be undertaken in physical mode/online mode in industry/R&D organisations/Premier educational institutes. Internship must focus on Civil Engineering domain/allied areas. The award of credits for internship will be based the performance in Viva-Voce and report submitted.

B.Tech VIII SEM CE (R20)

Course Title	Proj	ect Wo	rk/Int	B.Tech CE VIII Sem (R20)						
Course Code	Category	Ηοι	ırs/We	eek	Credits	Maximum Marks				
2001801	PROJ	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		-	-	-	12	40	60	100		
	Mid Exam	Durati	on:	-		End Exam Du	uration:			
Course Obj	ectives:									
• To a	• To apply the theoretical knowledge and practical skills they have acquired throughout									
their	coursework to a	real-wo	rld pro	ject.						
 To identify and define a problem or research question, analyze it critically, and propose effective solutions or outcomes. To develop their research skills, including literature review, data collection methods, data analysis, and interpretation To plan, organize, and manage their project activities effectively To communicate their project findings, methodologies, and outcomes effectively 										
Conse Ourcomes: On successful completion of this course, the students will be able to										
CO1	Identify the needs and requirements of a specific civil angineering task									
	Dian and design	$\frac{5 \text{ and } 10}{\text{ the } 10}$	yunen	and r	with the help	of appropriate ac	nventior	nal and		
CO 3	modern methods/tools.									
CO 4	Build professional competence and confidence in students to take up civil engineering assignments.									
CO 5	Prepare professio	onal documentation for the work carried out.								

The project work can be a design project/experimental project/field surveying/computer oriented on any of the topics of civil engineering/allied domain. The internal assessment will be done through three progress seminars during eight semester reviewed by internal committee members. A consolidated six to ten pages of typed report based on the progress work done have to be submitted by the batch of students to the assessing committee during each review process. The external assessment of the project will be done at the end of the semester by a committee consisting of both internal and external faculty members specialized in various fields of Civil Engineering. The students will present their project work before the committee. Each group will submit the copies of the completed project report signed by the guide to the department. The head of the department will certify the copies and return the reports to the students. Students have to submit the three hard copies, one copy to the respective guide, one copy to the departmental library and another copy to the college library.